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Abstract—Ensembles of climate model simulations are
commonly used to separate externally forced climate
change from internal climate variability. However, much
of the information gained from running large ensembles
is lost in traditional methods of data reduction such as lin-
ear trend analysis or large-scale averaging. In this paper,
we describe a statistical method to extract patterns of low-
frequency variability and change from large ensembles.
We demonstrate how this method characterizes modes
of forced climate change (e.g., global warming) and low-
frequency internal variability (e.g., the Pacific decadal
oscillation) in the CESM large ensemble.

I. MOTIVATION

Internal climate variability gives rise to uncertainty
in long-term climate predictions [1]. Ensembles of
climate model simulations are often used to quantify
this uncertainty and to better understand the average
response to external forcing [2], [3], [4]. Separating
the forced response from the internal variability also
helps to understand multi-decadal internal variability
[5], which may lead to better decadal climate pre-
dictions [6]. However, most climate studies diagnose
the spatial pattern of climate change by computing
linear trends and/or diagnose the temporal behavior
of climate variability by studying large-scale spatial
averages. These methods of dimension reduction loose
valuable information about the complex spatiotemporal
structure of climate variability and change.

Principal component analysis (PCA) provides spa-
tiotemporal information about the modes of variability
that explain the most variance in a dataset. However, by
maximizing variance, PCA can mix together physically
distinct modes of variability such as global warming
and the El Niño–Southern Oscillation (ENSO). One
method to correct for this mode mixing is to look for
linear combinations of the empirical orthogonal func-
tions (EOFs) that maximize a particular type of variance
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representing a “signal” compared to “noise” that exists
within internal variability or amongst realizations, so-
called optimal filtering or signal-to-noise maximizing
EOF analysis [7], [8], [9], [10], [11]. These methods
take advantage of any spatial structure in the “noise”
to optimally filter it out. Here, we use low-frequency
component analysis (LFCA, [12]) to find patterns with
the maximum ratio of low-frequency (signal) to high-
frequency (noise) variance, correcting for mode mixing
based on differences in time scale between physically
plausible modes of variability.

II. METHOD

The basic assumption behind our approach is that
externally forced climate change operates on longer
time scales than most internal variability. We can thus
isolate patterns of climate change by solving for spatial
patterns that describe variability with the maximum
ratio of low-frequency to total variance, where low-
frequency variance is defined as the variance remaining
after application of a lowpass filter. LFCA provides an
algorithm to find such spatial patterns for a truncated
basis of EOFs. This method orders modes by their ratio
of low-frequency to total variance, providing orthogonal
indices of climate variability that tend to be ordered by
time scale. For example, it separates global warming,
the Pacific Decadal Oscillation (PDO), and ENSO in
observed Pacific SSTs [12]. Here, we generalize LFCA
for application to climate model ensembles. Our ensem-
ble LFCA method is as follows:

1. Compute ensemble covariance matrix. For an
ensemble of nE climate model simulations, each with
n×p data matrix Xi, we compute the p×p covariance
matrix Ci with respect to either (a) the ensemble-mean
climatology vector xE or (b) the individual-ensemble-
member climatology vector xi. Option (b) discards
differences in climatology between ensemble members,
while option (a) does not.

2. Ensemble EOF analysis. We compute the EOFs
ak, which are the eigenvectors of the ensemble covari-
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Fig. 1. Low-frequency patterns (LFPs) and components (LFCs) of the CESM large-ensemble historical simulation, with N = 25 EOFs
retained and maximization of the variance remaining after application of Lanczos lowpass filter with cutoff τ = 10 years. Orange (blue)
lines show the ensemble member with the most (least) change in LFC 1 over the last 20 years. All other ensemble members are shown
with grey lines. A black line shows the average of the LFC over all ensemble members.

ance matrix

CE = n−1
E ΣnE

i=1Ci. (1)

The EOFs are normalized ||ak|| = 1, such that the
principal components have unit variance and the corre-
sponding eigenvalue σ2k = aTkCeak gives the variance
associated with the kth EOF.

3. Low-frequency component analysis. We apply
the LFCA algorithm [12] (see also [10]) to find the
linear combination of the first N EOFs,

uk =

[
a1
σ1

a2
σ2

...
aN
σN

]
ek, (2)

such that the ratio of low-frequency to total variance

rk =

(
X̃Euk

)T
X̃Euk

(XEuk)
T XEuk

(3)

is maximized when the data is projected onto it. Here,
XE is the full-ensemble data matrix, obtained by con-
catenating individual-ensemble-member data matrices

XE = [XT
1 XT

2 ... XT
nE

]T , and X̃E is the lowpass-
filtered full-ensemble data matrix, obtained by concate-
nating lowpass-filtered data matrices (i.e., we do not
filter over the discontinuities between ensemble mem-
bers). In practice, the linear combination coefficients
ek are computed as the eigenvectors of the covariance
matrix of the first N lowpass-filtered principal compo-
nents, such that filtering only needs to be applied to an
n ·nE ×N matrix of the leading principal components
(see derivation in [12]).

4. Visualizing results. The result is low-frequency
components (LFCs) given by

LFCk = XEuk (4)

and low-frequency patterns (LFPs) given by

vk = XT
ELFCk = [σ1a1 σ2a2 ... σNaN ] ek. (5)

These are analogous to principal components and EOFs
in PCA. The linear coefficients are normalized ||ek|| =
1, such that the LFCs have unit variance and the LFPs
show the spatial pattern associated with a 1-standard-
deviation anomaly in the corresponding LFC.
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III. RESULTS

We demonstrate our method by applying it to annual-
mean surface temperatures from a 40-member ensem-
ble of “historical” simulations with the Community
Earth System Model (CESM) [4]. These simulations
simulate climate from 1920 to 2005 based on histor-
ical forcing by greenhouse gasses, anthropogenic and
volcanic aerosols, and ozone. The ensemble members
differ only by machine-precession perturbations in their
atmospheric initial condition in 1920, such that their
climatology vectors xi differ only as a result of internal
variability. We include these climatology differences by
using option (a) in step 1. We retain N = 25 EOFs in
the LFCA and use a Lanczos filter with lowpass cutoff
τ = 10 years to focus on multi-decadal variability. The
results are insensitive to the choice of cutoff for τ > 5
years. However, there is no good criterion for choosing
N , so in practice one must look for results that are
robust across parameters (see discussion in [12]).

The first LFP shows a global warming pattern, with
amplified warming over land and at high latitudes
(Fig. 1). The associated LFC increases by 3 standard
deviations from 1920 to 2005, emerging well beyond
the ensemble spread. The second LFP/LFC shows
cooling of the North Atlantic, Arctic, and Northern
Hemisphere land through the 1950s and 60s and a
subsequent recovery (Fig. 1), corresponding roughly
to the time series of anthropogenic aerosol radiative
forcing [13]. It also shows a large excursion in the
ensemble mean due to the Mt. Pinatubo eruption in
1991 and a large variance amongst ensemble members,
perhaps related to Atlantic multi-decadal variability
[14]. The third LFP/LFC shows low-frequency internal
variability associated with the PDO ([15], Fig. 1). There
is only a small excursion in the ensemble mean, before
1930, related to spin-up from initial conditions. The
fourth LFP/LFC shows low-frequency variability over
the Barents-Kara Sea, Eurasia, and the North Pacific
(Fig. 1). It shows primarily internal variability (i.e.,
there is little agreement amongst ensemble members),
but there is a response to the volcanic eruptions in
1982 and 1991. The remaining LFCs 5-25 show internal
variability with increasingly shorter time scales. One
interesting aspect of these results is that modes can be a
combination of internal variability and forced responses
(e.g., LFC 2-4), whereas most other analysis methods
assume that modes are either one or the other.

To quantify the number of ensemble members needed
to obtain these results, we compute the pattern corre-
lation of LFPs obtained from analyses with fewer en-
semble members, with those of the 40-member analysis
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Fig. 2. Convergence of the first 4 LFPs as the ensemble size
is increased, based on pattern correlation with results of the
40-ensemble-member analysis; comparison to convergence of the
ensemble-mean linear trend. To make sub-ensembles, we pick the
first nE ensemble members from the 40-member ensemble. All
ensemble members are identical in design, so we do not expect
that our conclusions are sensitive to this sampling method.

(Fig. 2). For LFP 1, we find a pattern correlation > 0.95
using only 3 ensemble members. This is slightly less
than the 4 ensemble members needed for a pattern cor-
relation > 0.95 between the ensemble-mean linear trend
and the 40-member ensemble-mean linear trend. Few
ensemble members are needed for a robust estimate of
global warming. The second, third, and fourth LFPs
take longer to converge, requiring 7, 9, and 14 ensemble
members, respectively, to reach a pattern correlation
> 0.9. Only with large ensembles (or long control runs)
can we understand these higher-order LFCs.

IV. SUMMARY AND OUTLOOK

We have demonstrated that ensemble LFCA can
identify modes of low-frequency variability and change
that are robust across climate model ensembles. It needs
only 3 ensemble members to identify the forced global
warming pattern, and makes no assumptions on the
linearity of the warming response.

We have also applied our method to multi-model
ensembles, where it is beneficial to discard the large
ensemble-member differences in climatology (option
b in step 1). This method provides particular utility
when there are multiple time scales of forced response,
such as in simulations of the response to abrupt 4xCO2

forcing. This provides a powerful tool to visualize
the dominant modes of low-frequency variability and
change in large climate datasets.
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