
1. Introduction
The Southern Hemisphere westerly winds play a key role in returning deep ocean waters to the surface and thus 
largely govern the rate at which the deep oceanic reservoirs of heat and carbon communicate with the surface ocean 
and atmosphere (Marshall & Speer, 2012; Toggweiler & Samuels, 1995). South of ∼47°S the modern westerly 
winds drive divergent Ekman transports that contribute to lift deepwaters and tilt density surfaces (Toggweiler & 
Samuels, 1995). Although mesoscale ocean eddies work to flatten the steep isopycnals, the counteraction of the 
wind-driven circulation by the eddies is incomplete, resulting in a residual circulation that brings macro-nutrient 
and carbon rich deepwaters to the surface (Abernathey et al., 2011; Marshall & Speer, 2012). Due to iron (Martin 
et al., 1990) and light (Mitchell et al., 1991) limitation the upwelled nutrients are not completely utilized before 
buoyancy loss near the Antarctic continent causes some of the upwelled waters to sink as Antarctic Bottom 
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Plain Language Summary The mid-latitudes of the Southern Hemisphere are characterized by a 
band of strong westerly winds. These winds play an important role in driving the circulation of the deep ocean 
and are thought to influence the oceans' ability to store carbon. Understanding how the westerlies have varied 
in the past is challenging as we have few methods to track the winds directly. Here we use oxygen isotopes in 
foraminiferal shells to track changes in the broad-scale pattern of sea surface temperature across the Southern 
Ocean, which we link to changes in the winds using climate models. We find the westerly winds were displaced 
around 5° equatorward during the cold climate of the last ice age, and that the poleward shift in the winds we 
observe as the earth warmed out of the ice age bears an uncanny resemblance to the increase in atmospheric 
CO2. We then force the winds in a climate model toward the equator in a similar manner to the shift we observe 
in the ice age, and find the model stores more carbon in the ocean. Our results support a link between shifts in 
the Southern Hemisphere westerly winds and atmospheric CO2.
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Water, filling the deep ocean with “preformed” nutrients (Ito & Follows, 2005; Pasquier & Holzer, 2016). This 
“leak” in the biological pump, largely caused by the over-supply of nutrients to the surface ocean by wind-driven 
upwelling, leads to the hypothesis that changes in the Southern Hemisphere westerly winds could help regulate 
atmospheric CO2 over glacial-interglacial cycles (Ai et al., 2020; Anderson et al., 2009; Lauderdale et al., 2017; 
Sigman & Boyle, 2000; Toggweiler et al., 2006).

Past changes in the position and strength of the Southern Hemisphere westerly winds are poorly constrained, 
making it difficult to assess their role in driving past carbon cycle changes. A compilation of diverse proxy data 
suggests signals of an equatorward shift in the westerlies during the Last Glacial Maximum (LGM, 19–23 ka) 
relative to the Holocene (Kohfeld et al., 2013). However, relating changes in the measured proxies (i.e., terrestrial 
moisture, marine productivity) to the position of the westerlies is challenging, both quantitatively and qualita-
tively, such that even the direction of change during the LGM (i.e., poleward vs. equatorward) is debated (Sime 
et al., 2013, 2016). Furthermore, while climate models show a relatively clear and consistent signal of an equa-
torward shift in the Northern Hemisphere surface westerlies under glacial forcings (Gray et al., 2020; Kageyama 
et al., 2020; Li & Battisti, 2008) in agreement with proxy data (Gray et al., 2020), they show little consistency 
in the magnitude or sign of change in the Southern Hemisphere (Chavaillaz et al., 2013; Kageyama et al., 2020; 
Sime et al., 2013). Ice core data suggest abrupt shifts in the westerlies during the millennial scale atmospheric 
CO2 variability of the last glacial period (Buizert et al., 2018), but there is currently little constraint on how or 
when the westerlies shifted over the last deglaciation (20–10 ka), as atmospheric CO2 rose by ∼90 ppmv (Marcott 
et al., 2014).

To reconstruct changes in the position of the Southern Hemisphere westerly winds over the last deglaciation we 
exploit the two-way basin-scale coupling between the westerly winds and the meridional gradients in sea surface 
temperature (SST) at mid-latitudes (Nakamura et al., 2004; Yang et al., 2020). At the latitude where the meridi-
onal SST gradient is steepest, baroclinicity in the lower atmosphere is elevated, initiating baroclinic storm track 
eddies that converge zonal momentum and anchor the surface westerlies (Nakamura et al., 2008). The westerly 
wind stress in turn drives ocean current systems that maintain the steep SST gradient, closing the feedback loop 
(Nakamura et al., 2004, 2008). This two-way coupling implies that the latitude of maximum zonal-mean zonal 
wind stress (hereafter referred to as wind latitude) should be related to the latitude of maximum meridional gradi-
ent of zonal-mean SST (hereafter referred to as SST front latitude) across broad sectors of the Southern Ocean 
(Nakamura et al., 2008; Yang et al., 2020).

To track changes in the Southern Ocean SST front latitude over the deglaciation we use a basin-wide compilation 
of δ 18O in planktic foraminiferal calcite (δ 18Ocalcite; Figure 1). Although δ 18Ocalcite is a function of both tempera-
ture and the δ 18O of seawater (δ 18Owater), the effect of temperature is around six times greater than the effect of 
δ 18Owater at the basin scale (Figure S1 in Supporting Information S1). As no physical mechanism exists to drive 
such large changes in δ 18Owater at the basin scale, and as the Southern Ocean meridional pattern of δ 18Owater is 
itself closely linked to the SST pattern via the influence of downgradient moisture fluxes on net precipitation 
(Siler et  al.,  2018), the meridional pattern of δ 18Ocalcite will always be dominated by temperature and tightly 
coupled to the meridional SST profile (Figure S1 in Supporting Information S1). Meridional profiles of δ 18Ocalcite 
thus allow us to identify and track the SST front latitude (Gray et al., 2020) (Figure 1). We use an ensemble of 
climate models to establish an “emergent” relationship (i.e., an empirical, multi-model, relationship) (Eyring 
et al., 2019; Hall et al., 2019) between the SST front latitude and the wind latitude. We first test the skill of 
this model-derived relationship, before combining it with the reconstructed changes in the SST front latitude to 
quantify shifts in the surface westerlies over deglaciation. Finally, we perform new experiments with a ¼ degree 
ocean-sea ice-carbon cycle model to better understand the impact of wind shift on the residual circulation and 
biogeochemistry of the Southern Ocean.

2. Methods
2.1. New and Compiled Planktic Foraminiferal δ 18O Data From the Southern Ocean

We compiled existing records of planktic foraminiferal δ 18O from near-surface dwelling species from core sites 
across the Southern Ocean, and generated new data from cores in the Kerguelen plateau and southeast Pacific 
(Figures 1a and 1b; Figures S2 and S3 in Supporting Information S1). We generated new planktic foraminiferal 
δ 18O records from two sediment cores retrieved from the Kerguelen Plateau during cruise OSCAR INDIEN-SUD 
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(MD12-3396CQ, −47.73°N, 87.69°E; MD12-3401CQ, −44.68°S, 80.39°E). Furthermore, we extended/
increased the resolution of two previously published records from cores located on Kerguelen (MD02-2488, 
−51.07°N, 67.73°E) and in the southeast Pacific (MD07-3119, −46.08°N, −76.1°E). We analyzed δ 18O on either 
Globigerina bulloides or Neogloboquadrina pachyderma using a GV Isoprime 100 and an OPTIMA, and a 
Finnigan MAT251 and a ∆+ at the Laboratoire des Sciences du Climat et de l'Environnement (LSCE). The meas-
urements are reported versus Vienna Pee Dee Belemnite (VPDB) standard defined with respect to the NBS19 
standard. The mean external reproducibility (1σ) of carbonate standards is ±0.06% for δ 18O; the different mass 
spectrometers are regularly inter-calibrated and the data are corrected, depending on the devices, for nonlinear-
ity and the common acid bath. Within this internal calibration, NBS18 is −23.2% ± 0.2% VPDB for δ 18O and 
−5.0% ± 0.1% VPDB for δ 13C. Age models for all the cores are based on radiocarbon dating, and further details 
of the age models can be found in Haddam et al. (2020) for core MD07-3119 and Gottschalk et al. (2020) for core 
MD12-3396CQ. Reservoir age changes for the Kerguelen area followed results to establish the age model of core 
MD12-3401CQ (Gottschalk et al., 2020). The new data are provided in Table S1 and are available on Pangaea 
(https://doi.org/10.1594/PANGAEA.932846).

We compiled all available existing δ 18O records for near-surface dwelling planktic foraminifera species (Globige-
rinoides ruber, G. bulloides, N. pachyderma; Supporting Information  S1) spanning the last deglaciation 
(10–20 ka) from across the Southern Ocean (Bostock et al., 2004, 2015; Caley et al., 2011; Calvo et al., 2007; 
Caniupán et al., 2011; Carlson et al., 2008; Charles et al., 1991; Chiessi et al., 2014; Crosta et al., 2004; Dyez 
et al., 2014; Fischer & Wefer, 1999; Gersonde et al., 2003; Gottschalk et al., 2015, 2018; Govin et al., 2009; Grobe 
& Mackensen, 1992; Haddam et al., 2018; Hasenfratz et al., 2019; Hodell et al., 2000, 2003; Labeyrie et al., 1996; 

Figure 1. δ 18O data and whole ocean changes. (a) LGM-Holocene δ 18Oivc-gtc (δ 18Ocalcite corrected for ice volume and 
global-mean SST changes; Section 2) at the core sites. The modern climatological meridional δ 18O gradient is represented 
by the background shading (Figure S1 in Supporting Information S1; darkest shade represents 0.25‰/°Lat, equivalent to 
∼1°C/°Lat). The red contours show modern annual-mean near-surface zonal wind speed in m/s (Figure S1 in Supporting 
Information S1). (b) Meridional profiles Holocene (dashed/gray) and Last Glacial Maximum (solid/pink) δ 18Oivc-gtc. The 
data are fit with a generalized additive model. Error envelopes show ±1SE. The modern climatological zonal-mean δ 18Ocalcite 
profile is shown by the solid black line (Figure S1 in Supporting Information S1). The gray box shows the latitudinal window 
in which ∆LatSST is calculated. Symbols on (a) and (b) distinguish foraminiferal species. (c) Whole ocean δ 18O corrections 
calculated from the change in δ 18O from global ice volume and global mean SST change (δ 18Oivc-gtc), and the measured 
change in δ 18Ocalcite in the combined polar (>65°S) and subtropical (<25°S) portions of the meridional δ 18O profiles (Figures 
S2 and S3 in Supporting Information S1), uncorrected for whole-ocean effects on δ 18O. The impact of shifts in the westerlies 
is substantially smaller in these regions compared to the mid-latitudes, such that they should broadly reflect the whole ocean 
changes rather than local dynamics.
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Lamy et al., 2004; Levi et al., 2007; Lu et al., 2016; Martínez-Méndez et al., 2010; Mashiotta et al., 1999; Mohtadi 
et al., 2008; Nelson et al., 2000; Pereira et al., 2018; Pichon et al., 1992; Portilho-Ramos et al., 2018; Rickaby 
& Elderfield, 1999; Santos et  al., 2017; Sarnthein et  al., 1994; Schiraldi et  al., 2014; Schneider et  al., 1995; 
Scussolini & Peeters, 2013; Sicre et al., 2005; Sikes et al., 2009; Stuut et al., 2002, 2019; Y. V. Wang et al., 2013; 
Winn, 2013; Zahn et al., 1994). The compiled records are kept on the original age model of publication. Together, 
the new and compiled data amount to 64 deglacial records of planktic foraminiferal δ 18O. All δ 18O data are given 
in Table S1 and are available on Pangaea (https://doi.org/10.1594/PANGAEA.932846).

2.2. Tracking the SST Front Latitude

Meridional shifts in the SST front (∆LatSST) are calculated by finding the latitudinal shift that minimizes the differ-
ence between the δ 18O profile at each time step and the Holocene δ 18O profile, within a 10° latitudinal window 
that includes the steepest part of the profile (Gray et al., 2020) (Figure 1b and Figures S2 and S3 in Supporting 
Information S1). We account for whole ocean changes in δ 18Owater and the global-mean SST change (δ 18Oivc-gtc; 
Figure 1c), quantifying uncertainties via bootstrapping and Monte-Carlo simulation. We compute ∆LatSST across 
the entire Southern Ocean, as well as separately in the Indian-Pacific and Atlantic sectors (Figure 2), and regional 
subsets (Section 3.3); given the paucity of data from south of 65°S we include Antarctic marginal sites from 
all sectors in all regional subsets. The R code and data used to perform the analysis is provided at https://doi.
org/10.5281/zenodo.7866501. The ∆LatSST reconstructions are provided in Tables S2 and S3.

In detail, the analyses were performed as follows: we first interpolate the δ 18O data to a 250-year time grid 
extending from 20 to 10 ka using a Generalized Additive Model (GAM) (Wood, 2011), with the smoothing term 
determined by restricted maximum likelihood (Wood et al., 2016). The reader is referred to Simpson (2018) for 
an overview of GAMs. Only foraminiferal δ 18O records that span the entire time period of the reconstruction 
are utilized such that our analysis compares relative changes in the same records through time; as such both 
the spatial distribution and the species composition of the δ 18O data remain constant at all timesteps. The mean 
temporal resolution of the individual records over deglaciation is about 1 point per 250 years, and we only include 
δ 18Ocalcite records with a minimum of 1 point per 1 ka over the deglaciation.

We model the δ 18O data at each time step (first correcting for whole-ocean effects, see below) as a function of latitude 
using a GAM in the same manner as described above (Figures S2 and S3 in Supporting Information S1). We compute 
the shift in latitude which minimizes the Euclidean distance (L 2) between the GAM fit at each time step relative to 
10 ka, within a 10° latitude band centered around the steepest part of the Holocene meridional SST/δ 18Ocalcite profile 
(40–50°S; gray box in Figure 1b; Figures S2 and S3 in Supporting Information S1). The width of this latitudinal 
band has a negligible impact on our results. The 10 ka reference time is chosen to maximize the number of records 
spanning the deglaciation. Note, we use this method to track the position of the SST front latitude through time, rather 
than directly locating the latitude of maximum gradient in δ 18Ocalcite in the same way we locate the SST front in model 
output (see Section 3.2), because this method was demonstrated to perform better with proxy data (Gray et al., 2020).

To minimize temporal changes in the meridional δ 18Ocalcite profile that arise from whole-ocean changes rather than 
regional dynamics we correct the δ 18Ocalcite data for the whole-ocean change in δ 18Owater (arising from ice sheet 
growth/retreat) and the global-mean SST change (δ 18Oivc-gtc) (Figure 1c). For the whole-ocean change in δ 18Owater 
we scale the LGM-Holocene change of 1.0 ± 0.1‰ (2σ) (Schrag et al., 2002) by the sea level curve of Lambeck 
et  al.  (2014). For the global-mean SST change we scale the −1.7  ±  1.0°C (2σ) area-weighted global-mean 
LGM-preindustrial change in SST from the Paleoclimate Modeling Intercomparison Project (PMIP) 3 and 4 
ensemble (see Section 2.3; note, the recent multi-model data assimilation of Annan et al. (2022) falls within this 
range), by the global temperature record of Shakun et al. (2012), using the water-calcite temperature fractiona-
tion (δ 18Ocalcite-water) of Kim and O’Neil (1997), which agrees with the pooled-foraminiferal species sensitivity of 
Malevich et al. (2019). We propagate the uncertainty from these whole-ocean corrections through to our final 
results. We note these whole-ocean corrections make the reconstructed changes in the position of the SST front 
more conservative; removing the global-mean SST change correction entirely results in an Indian-Pacific ∆LatSST 
of ∼7° between 10 and 20  ka (cf. ∼5° including the correction). The δ 18Ocalcite evolution in the subtropical 
and polar sectors (i.e., the regions where we expect the dynamically driven changes to be substantially smaller 
relative to the mid-latitudes; Figures S2 and S3 in Supporting Information S1) shows excellent agreement in 
both magnitude and timing with the whole-ocean δ 18O corrections we are applying (Figure  1c), confirming 
these whole-ocean corrections are unlikely to be introducing substantial artifacts into the reconstruction. Our 
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leave-one-out analysis (Section  3.1) shows that our reconstruction is primarily driven by mid-latitude sites, 
further indicating these whole-ocean corrections are unlikely to be biasing our results. Finally, the lack of change 
in the ∆LatSST reconstruction in the Atlantic (Figure 2) also demonstrates that these whole-ocean corrections do 
not induce apparent shifts in the position of the SST front.

Figure 2. ∆LatSST within different sectors and core weightings in the Indian-Pacific sector. Change in the SST front latitude (∆LatSST) from 20 to 10 ka using (a) all 
data from across the Southern Ocean, and in the (b) Indian-Pacific and (c) Atlantic sectors separately. The 5th, 32nd, 50th, 68th, and 95th percentiles are indicated. 
The colored symbols on (a) and (b) show the residual change in LGM-PI SST front latitude in each model within the ensemble. The residual change is calculated as 
the change in SST front latitude beyond the expected change in SST front latitude given the change in wind latitude within the same model (Section 3.2; Figure 5), 
and the relationship between the two parameters (Figures 3a and 3b). Colors represent individual models; see Figures 3, 5, or 8 for key to individual models. The 
ensemble mean is shown by the black square. The shaded area shows the distribution of the uncertainty about the mean, with the black lines showing the 68% and 95% 
CI. Our reconstructed shift in SST front latitude is significantly larger than the residual change in SST front latitude during the Last Glacial Maximum seen in any of 
the individual models. Contribution of each record to the Indian-Pacific ∆LatSST reconstruction based on leave-one-out analysis. (d–e) 10–20 ka reconstruction (f–g) 
6.5–22 ka reconstruction. Note Antarctic marginal sites from the Atlantic sector are also included given the paucity of data from south of 65°S. Symbols distinguish 
species of planktic foraminifera (circles = N. pachyderma, triangles = G. bulloides, squares = G. ruber).
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Figure 3. Emergent relationships in the PMIP3/4 and CMIP5/6 ensemble. (a) Relationship between the wind latitude 
(latitude of maximum zonal-mean zonal wind stress) and SST front latitude (latitude of maximum meridional gradient in 
zonal-mean SST, within a 10° latitudinal window) within the PMIP3/CMIP5 and PMIP4/CMIP6 ensemble. Error envelope 
shows ±1SE. Note the 5° offset between the axes. (b) Relationship between the zonal-mean wind latitude and SST front 
latitude across the Indian and Pacific sectors. The MPI model sits as an outlier from the rest of the ensemble, and is excluded 
from the regression. Including the MPI model has a negligible impact on our results. (c) Relationship between wind latitude 
and zonal-mean wind stress at 60°S (τu,60S). (d) Relationship between wind latitude and wind strength (maximum zonal-mean 
τu). (e) Relationship between SST front latitude and sea ice extent (area with >15% annual mean sea ice concentration).
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We derive uncertainties via bootstrap resampling of the data set (Efron, 1979) (10,000 iterations), also account-
ing for the age and analytical uncertainties on individual records as well as the uncertainties in the whole-ocean 
change in δ 18Owater and the global-mean SST change with Monte-Carlo simulation. We ascribe age uncertainties 
of ±1,000 years (2σ), and analytical uncertainties of ±0.08‰ (2σ) to all planktic foraminiferal δ 18O records. 
When calculating the lead-lag between our ∆LatSST reconstruction and the change in atmospheric CO2 and the 
global temperature over deglaciation (Section 3.4) we account for age uncertainties in the CO2 record using the 
typical gas age uncertainty in the West Antarctic Ice Sheet Divide ice core over deglaciation (±75 years, 1σ; Sigl 
et al., 2016). For the age uncertainty in the global mean temperature stack we take the uncertainty in the lag of 
global temperature over CO2 (±340 years, 1σ) from Shakun et al. (2012). To account for age uncertainties in the 
∆LatSST reconstruction, we repeat the lead-lag analysis using each bootstrap/Monte-Carlo iteration of the ∆LatSST 
reconstruction. This approach assumes age uncertainties within the δ 18O compilation are uncorrelated, which is 
unlikely given for example, reservoir age changes in the Southern Ocean (although methodological differences 
between studies add a source of random “human behavioral” error), but still provides a first-order assessment of 
leads and lags between the different time series.

To assess shifts in the westerlies within the early Holocene we repeat the analysis over a longer time period 
(6.5–22 ka) which necessitates using a smaller subset of cores and thus results in larger uncertainties (Figure S4 
in Supporting Information S1). Still, the results show excellent agreement with the complete set of cores (i.e., 
spanning 10–20 ka) (Figure S4 in Supporting Information S1), with a slope of 0.95 during the overlapping inter-
val. We correct for this difference in slope in the longer reconstruction, though the correction makes a negligible 
difference and does not impact our conclusions (Figure S4 in Supporting Information S1). Performing the analy-
sis further into the Holocene (2.5–22 ka) results in substantially higher uncertainties due to the small number of 
cores spanning this interval, but the results suggest the SST front latitude/westerlies are relatively stable through 
the late Holocene (Figure S4 in Supporting Information S1), in agreement with qualitative indicators of the winds 
(Buizert et al., 2018; Lamy et al., 2010; Saunders et al., 2018).

2.3. PMIP3/4 and CMIP5/6 Climate Model Ensemble

We use an ensemble of climate models from PMIP3 (Braconnot et al., 2012) and PMIP4 (Kageyama et al., 2018, 2020) 
and Coupled Model Intercomparison Project (CMIP) 5 (Taylor et al., 2012) and 6 (Eyring et al., 2016); data available 
at https://esgf-node.llnl.gov/projects/esgf-llnl/. We use all CMIP5/PMIP3 and CMIP6/PMIP4 models for which both 
SST and zonal surface wind fields are available for the LGM and preindustrial (PI) simulations, and also include the 
4 × CO2 simulations from these models where available. Annual-mean climatologies are calculated from the final 
100 years of each simulation (years 51–150 of the 4 × CO2 simulation) and interpolated to a common 2° analysis grid.

We calculate the SST front latitude as the latitude of maximum meridional gradient in zonal-mean SST in each simu-
lation within a 10° latitudinal averaging window. The zonal mean SST is first smoothed using a 10° running mean 
(to eliminate small-scale variability). The SST front is then defined where the smoothed SST profile has the largest 
meridional gradient. This definition focuses on the broad-scale mid-latitude meridional temperature gradient, simi-
lar to previous work (Yang et al., 2020), and is thus broader than, and distinct from, oceanic fronts associated with the 
Antarctic Circumpolar Current (ACC) (Chapman et al., 2020). We use zonal-mean SST across the Southern Ocean 
(Figure 3a) and across regional subsets (Figures 3b and 4; Figure S5 in Supporting Information S1). We calculate 
the wind latitude as the latitude of maximum zonal-mean zonal wind stress, the wind strength as the maximum in 
zonal-mean zonal wind stress, and the sea ice extent as the area with >15% annual-mean sea ice concentration.

The model ensemble allows us to quantify emergent relationships (empirical, multi-model, relationships) (Eyring 
et al., 2019; Hall et al., 2019) between wind latitude and SST front latitude (Figures 3a, 3b, and 4), wind latitude 
and wind strength (Figure 3c), and wind latitude and zonal-mean zonal wind stress at 60°S (τu,60S; Figure 3d). 
We will test the skill of the emergent relationship between wind latitude and SST front latitude (Section 3.3; 
Figure 4), before combining it with reconstructed changes in the SST front latitude (∆LatSST) to quantify past 
shifts in the wind latitude (∆Latwind). We then estimate changes in wind strength and τu,60S using the reconstruc-
tion of wind latitude and the emergent relationships with these properties.

2.4. Wind-Shift Experiments With a 0.25° Ocean-Sea-Ice-Carbon Model

We use the ocean-sea-ice-carbon model MOM5-SIS-Wombat with a Mercator horizontal resolution of 0.25° 
(∼11  km grid spacing at 65°S), and 50 vertical levels (Hogg et  al.,  2017; Menviel et  al.,  2018). The model 
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is initialized with modern-day temperature and salinity distributions, and biophysical fields derived from an 
observation-based climatology (GLODAP v2; Olsen et al., 2016). The model is then spun-up for 700 years with 
version 2 of the Coordinated Ocean-ice Reference Experiments Normal Year Forcing reanalysis data (Griffies 
et al., 2009), representative of a “normal year” during the recent instrumental period. To study the impact of 
equatorward shifted southern westerlies, a 4° equatorward shift (with no change in magnitude) is applied to 
the near-surface wind speeds between 25°S and 70°S. The perturbation simulation is run for 125 years. Anom-
alies are calculated as the difference between the average of the last 10 years of the Perturbed experiment and 
the concomitantly extended Control experiment to remove the influence of model drift. Both experiments are 
forced with the same atmospheric temperatures and precipitation, so that SST and buoyancy fluxes do not freely 
adjust to the shifted winds in the Perturbed experiment. Our experimental design thus precludes a comprehensive 
assessment of feedback effects between ocean dynamics and buoyancy balance that play an important role in 
setting the equilibrium state of the real ocean (Abernathey et al., 2011; Bishop et al., 2016).

The model includes parameterizations for the effects of mesoscale eddies on tracer and mass transports. The 
isopycnal tracer diffusivity (Redi, 1982) is constant at 600 m 2 s −1. The isopycnal thickness diffusivity (Gent & 
Mcwilliams, 1990) is independent of depth but varies horizontally and temporally with the simulated stratification 
(it is proportional to the product of local Rossby radius squared and Eady growth rate). These diffusivities are 
imperfect surrogates for the effects of mesoscale eddies, and may therefore introduce bias in the simulated circu-
lation and its sensitivity. However, the dependence of the isopycnal thickness diffusivity on local quantities 
relevant to baroclinic instability enables appropriate sensitivity of the simulated overturning to wind changes 
(Gent, 2016). Additionally, realistic eddy-rich models indicate that the bulk of southward flow across the ACC is 
accomplished by mean geostrophic flows rather than transient eddies (Dufour et al., 2015; Mazloff et al., 2013), 
and that the Southern Ocean residual overturning responds sensitively to polar Ekman flows (Bishop et al., 2016; 
Dufour et al., 2012; Stewart et al., 2021). Consistent with these expectations, we find that resolved advection 

Figure 4. SST front and westerly wind changes based on regional subsets (a) Map showing regional subsets. Light gray 
dashed line corresponds to all core sites. Black includes all Indian-Pacific sites, blue has eastern Pacific sites removed, 
while pink has western Indian sites removed. Note that given the paucity of data from south of 65°S we include Antarctic 
marginal sites from all sectors in all regional subsets. (b) Relationship between zonal-mean wind latitude and regional SST 
front latitude within the model ensemble. Shading shows ±1SE. (c) Reconstructed change in SST front latitude (∆LatSST) 
within the regional subsets. (d) Reconstructed zonal-mean wind latitude (∆Latwind) calculated from the regional ∆LatSST 
reconstruction (c) and the relationships between regional SST front latitude and zonal-mean wind latitude given in (b).
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dominates both the deep southward flow across the ACC and the response to wind shift (Figures S6 and S7 in 
Supporting Information S1). Parameterized advection (representing the impact of eddies on mass transports) 
plays only a minor role in the overturning change (Figure S7 in Supporting Information S1). We also find a small 
change in the ACC strength: the eastward transport through Drake Passage is 122 Sv in the last decade of the 
Perturbed experiment, compared to 130 Sv in the same decade of the Control experiment (a 6% decrease).

3. Results and Discussion
3.1. Reconstructed Changes in the SST Front Latitude

Our analysis of the data reveals an equatorward shift in the SST front during the LGM (20 ka) relative to 10 ka 
(Figures 1b and 2; Figures S2 and S3 in Supporting Information S1), indicative of an equatorward shift in the 
winds. Mapping the LGM δ 18Oivc-gtc anomalies shows a large mid-latitude cooling during the LGM across the 
Indian and Pacific sectors (Figure 1a; equivalent to a cooling of 4–5°C beyond the global-mean SST change indi-
cated by the model ensemble). Our Indian-Pacific ∆LatSST reconstruction shows a 4.8° (3.6–6.1° 95% confidence 
interval [CI]) equatorward shift in the SST front during the LGM relative to 10 ka (Figure 2b). We perform a 
jack-knife (leave-one-out) resampling of the data set to determine the contribution of each planktic foraminiferal 
δ 18O record to the Indian-Pacific ∆LatSST reconstruction. We sequentially remove each record from the data 
set, recompute ∆LatSST, and determine the contribution of that record as the time-integrated absolute difference 
from ∆LatSST computed using the entire data set (expressed as a percentage of the absolute cumulative change in 
∆LatSST over deglaciation). This analysis shows that no single record contributes more than 5% of the total vari-
ance, and that the cores with the highest weighting are all located in the mid-latitudes (Figures 2d–2g), indicating 
the Indian-Pacific ∆LatSST reconstruction primarily reflects a mid-latitude signal.

By contrast, we find a slight warming anomaly (relative to the global-mean LGM SST change) at all latitudes in 
the western Atlantic (Figure 1a), possibly a signal of a weakened Atlantic Meridional Overturning Circulation 
(AMOC) (Gherardi et  al.,  2009; Stocker & Johnsen,  2003), and no significant change in the SST front lati-
tude within the Atlantic sector over deglaciation (Figure 2c). This result is consistent with a weak relationship 
between the SST front latitude and wind latitude in the eastern Atlantic, where the vast majority of the Atlantic 

Figure 5. LGM-PI and 4 × CO2-PI changes in SST front latitude and wind latitude in the model ensemble. The dashed gray 
line shows the relationship between SST front latitude and wind latitude across the ensemble incorporating the absolute 
differences in climatology between the models (equivalent to the regression line in Figure 3a). The solid black line shows the 
regression line between the ∆(wind latitude) and ∆(SST latitude) across the ensemble; this is statistically indistinguishable 
from the relationship incorporating the absolute differences in climatology between the models (Figure 3a), suggesting 
the coupling between the winds and SST front is a particularly robust feature of the climate model ensemble. Finally, the 
residuals of the LGM-PI changes (indicated with colored vertical lines) are randomly distributed, indicating the ensemble 
shows no bias away from the expected relationship between SST front latitude and wind latitude under Last Glacial Maximum 
forcing.
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mid-latitude cores are located (Figure 1a; Figure S5 in Supporting Information S1). This weak relationship might 
owe to bathymetric constraints on the latitude of the confluence of warm Indian Ocean waters and colder South-
ern Ocean waters south of Africa. Although we attribute the lack of change in the SST front latitude within the 
Atlantic to the partial decoupling of the westerlies and SST front there, we cannot rule out that the westerlies did 
not shift substantially over deglaciation within the Atlantic. Given the lack of sensitivity of SST front latitude in 
the Atlantic (Figure S5 in Supporting Information S1), we use the Indian-Pacific ∆LatSST timeseries (Figure 2b) 
to reconstruct shifts in the zonal-mean wind latitude over deglaciation. We note that also including the Atlantic 
data (Figure 2a) makes no substantial difference to the reconstruction of zonal-mean wind latitude (Section 3.3), 
but slightly increases the error.

3.2. Emergent SST Front-Wind Latitude Relationship and Coupling Dynamics

Pre-industrial, LGM, and 4 × CO2 simulations from the ensemble of models from the PMIP3/PMIP4 and CMIP5/
CMIP6 model ensemble demonstrate a tight zonal-mean relationship between wind latitude and SST front latitude 
over a wide range of climate states (Figure 3a; R 2 = 0.84). The wind latitude is located 3–10° poleward of the SST 
gradient latitude (Figure 3a), a consequence of the poleward drift of storm track eddies during their lifecycle (Tamarin 
& Kaspi, 2016). The relationship between the wind latitude and the SST front latitude has a slope of less than one, 
presumably because it is modulated by the influence of bathymetry and oceanic eddies on upper-ocean currents and 
SST (Dong et al., 2006; Kohfeld et al., 2013). These processes can cause local decoupling between the winds and SST 
gradient (Figure 1a), yet the coupling holds on a hemispheric scale (Nakamura et al., 2004, 2008) (Figures 3a and 3b).

The coupling mechanism between the winds and SST front is primarily due to the atmospheric response to ocean 
SST gradient anomalies, which is why it is also found in atmosphere-only models (Nakamura et al., 2008). However, 
the response of the surface ocean circulation acts as a feedback (via its influence on the SST gradient) and the 
coarse-resolution models employed here use parameterizations (Gent & McWilliams, 1990; Redi, 1982) for the 
effects of oceanic mesoscale eddies, which could lead to bias (i.e., structural uncertainty) in the emergent rela-
tionship. Coarse-resolution ocean models tend to overestimate the response of the ACC to wind changes (Bishop 
et al., 2016; Downes & Hogg, 2013). Should this bias lead to an overestimated slope in the relationships shown in 
Figures 3a and 3b, then our reconstruction of the SST front latitude would imply an even larger change in the wind lati-
tude over deglaciation. Nevertheless, several factors support the robustness of the emergent relationship (Figures 3a 
and 3b): (a) the presently defined SST front is distinct from the ACC and is expected to be more tightly coupled to 
wind shifts than the volume transport of the circumpolar current or the position of its major fronts (cf. Figure S5c in 
Supporting Information S1; Figure 3a); (b) the relationship does not stem only from model responses, but also from 
contrasting climatologies of the models under identical forcing (compare IPSL-CM5A-LR and CCSM4 under PI 
forcings in Figure 3a); (c) the regional subset test (Section 3.3 below) shows consistency between our proxy-based 
regional reconstructions of the SST front latitude and regional relationships within the model ensemble (Figure 4).

To assess whether some aspect of the LGM climate (i.e., global cooling, expanded Antarctic sea ice; Sime et al., 2016) 
may cause a deviation away from the emergent relationship between wind latitude and SST front latitude (Figures 3a 
and 3b), we calculate the LGM-PI changes in SST front latitude and wind latitude within each individual model in 
the ensemble (Figure 5). This approach effectively normalizes for the inter-model differences in preindustrial clima-
tology which drive much of the variance in the relationship (Figure 3a). We then calculate the residual change in SST 
front latitude during the LGM as the difference from the change expected using the relationship shown in Figure 3a. 
We find a mean residual of 0.1 ± 0.8° across the ensemble (i.e., within error of zero), implying that the ensemble 
moves along the relationship of Figure 3a between PI and LGM states. This indicates that there is no a priori reason to 
expect deviation away from the emergent relationship under glacial boundary conditions (e.g., due to an expansion of 
Antarctic sea ice). The largest residual change in SST front latitude within any of the individual models under glacial 
forcings is 1.3°; this is significantly smaller than the reconstructed LGM shift in SST front latitude, such that an equa-
torward shift in the westerlies is robust to even the largest of the individual LGM-PI residuals (Figures 2a and 2b). 
Finally, we find no correlation between Antarctic sea ice extent and the SST front latitude in the model ensemble 
(Figure 2e; R 2 = 0.02), nor do we find a correlation between sea ice extent and the wind latitude (R 2 = 0.03).

3.3. Quantifying Wind Shift From the SST Front Latitude

We apply the emergent relationship between wind latitude and SST front latitude in the Indian-Pacific sector 
(Figure 2b) to our Indian-Pacific ∆LatSST reconstruction to quantify shifts in the zonal-mean wind latitude over 
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the deglaciation (∆Latwind). We propagate the uncertainty in the relation-
ship between SST front and wind latitude through to our final estimates of 
∆Latwind using a Monte-Carlo approach (Section 2.2). The area-minimizing 
method used to track the SST front in the δ 18Ocalcite data (Gray et al., 2020) 
cannot be directly applied to the model ensemble because the SST climatol-
ogies differ across models. However, it is possible to apply this minimiza-
tion method to LGM-PI and 4 × CO2-PI differences within each model. We 
thus calculated ∆LatSST for each of these model differences using both meth-
ods (area-minimization and maximum gradient of zonal-mean SST); this 
comparison shows good agreement between the two methods, with a residual 
standard error of <0.5° and a slope within uncertainty of one (0.99 ± 0.08). 
Hence, the difference in the two methods used to locate the SST front is 
unlikely to bias our results. To account for the difference in the way the SST 
front latitude is determined in data and models we propagate this “method-
ological uncertainty” through to our final reconstruction of ∆Latwind. The 
∆Latwind reconstruction is provided in Tables S2 and S3.

To ascertain whether the model ensemble has skill in predicting the relation-
ship between regional SST front latitude and zonal-mean wind latitude, we 
first attempt reconstructions of ∆Latwind using regional subsets (Figure 4a); 
we sequentially remove regional subsets of cores from the compilation 
(Figure 4a), re-compute ∆LatSST (Figure 4c), and recalculate the relationship 
between the zonal-mean wind latitude and the regional SST front latitude 
(Figure 4b). We find that although different regions yield differing magni-
tudes of deglacial change in SST front latitude (Figure 4c), they yield almost 

identical changes in zonal-mean wind latitude (Figure 4d), given the region-specific relationship between the two 
(Figure 4b). This convergence of the ∆Latwind reconstructions (Figure 4d) suggests that the emergent relationship 
is not biased by the models' imperfect representation of the effects of bathymetry and eddies on the meridional 
SST gradient, such that any structural uncertainty is likely  to be small. If biases in these processes were impor-
tant, the large variations in bathymetry and eddies across sectors of the Southern Ocean (Thompson & Naveira 
Garabato,  2014) would be expected to lead to disagreements between the regional ∆Latwind reconstructions. 
Combining the measured shifts in SST front latitude with the emergent relationship between wind latitude and 
SST front latitude therefore provides a robust constraint on the zonal-mean wind latitude.

Finally, we excluded the MPI model from the regressions for the Indian-Pacific sector (Figure 2b), as this model 
sits as an outlier from the remainder of the ensemble (however the slope between wind latitude SST front latitude 
within the MPI model is consistent with the rest of the ensemble), possibly relating to meridional heat transport 
biases in the Indian sector (Fathrio et al., 2017), where we find the largest difference relative to the other models. 
Including the MPI model in the Indian-Pacific sector regression has a negligible effect on our results, slightly 
increasing the reconstructed change in wind latitude (∆Latwind) between 10 and 20 ka from 6.2° to 6.7° and 
increasing the uncertainty by 0.5° at the 95% CI. Removing the MRI model, which contains a previously identi-
fied issue with wind stress over sea-ice (Marzocchi & Jansen, 2017), makes no difference to our results.

3.4. Deglacial Shifts in the Surface Westerlies

We infer a 6.3° (4.3–8.7°, 95% CI) equatorward shift in the wind latitude during the LGM (20 ka) relative to 
10 ka (Figure 6). The evolution of the wind latitude over deglaciation closely mirrors, and is highly correlated 
with (R 2 = 0.98), the evolution of atmospheric CO2 (Marcott et al., 2014; Figure 6). We calculate the lead-lag 
between the Indian-Pacific ∆LatSST reconstruction and the change in atmospheric CO2 and global temperature 
over deglaciation as the time offset that maximizes the correlation between the two time series, broadly following 
the approach of Shakun et al. (2012). This suggests a 330 ± 230 years (95% CI) lead in changes in the winds over 
changes in CO2, and a 1,460 ± 670 years lead in the winds over global temperature change. As  a sensitivity test, 
we repeat the lead-lag analysis including varying degrees of “structural” age uncertainty in the Indian-Pacific 
∆LatSST reconstruction to account for the likely correlation of radiocarbon reservoir age uncertainties within the 
compilation. This suggests that the lead in the change in the winds over CO2 is significant at the 95% level until 

Figure 6. Deglacial shifts in the zonal-mean surface westerlies and 
atmospheric CO2. Deglacial change in the position of the wind latitude 
(∆Latwind, pink lines show the 5th, 32nd, 50th, 68th, and 95th percentiles) and 
atmospheric CO2 (Marcott et al., 2014) over time before present. HS1, ACR, 
and YD are Heinrich Stadial 1, Antarctic Cold Reversal, and Younger-Dryas, 
respectively.
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more than ∼30% of the age uncertainty is correlated across the compilation (assuming 100% of the age uncer-
tainty is correlated, i.e., perfect covariance, results in uncertainties of ±860 years [95% CI]). The reconstruction 
indicates a greater lead of ∆LatSST relative to CO2 after the Antarctic Cold Reversal (∼14 ka; Figure 3). To test 
whether the lead of ∆LatSST relative to CO2 holds in the early deglaciation, we repeat this analysis for 20–14 ka 
(cf. 20–10 ka) and find a lead of 160 years (−10–330 years, 95% CI), compared to 330 years (100–560 years, 
95% CI) over the entirety of the deglaciation. The planktic foraminiferal δ 18O compilation used in this study 
will benefit from any future improvements in our knowledge of regional radiocarbon reservoir ages (and their 
spatial covariance), which may lead to adjustments in the precise phasing between the inferred wind shifts and 
atmospheric CO2.

Our analysis over a longer time interval indicates an early Holocene extremum in the poleward position of 
the wind latitude, followed by a ∼1.5° equatorward shift in the winds over 10–6.5 ka (Figure 7a). Despite the 
larger uncertainties in the early Holocene reconstruction, it agrees well with the analysis of the full data set (i.e., 
10–20 ka) in the overlapping sections (Figure S4 in Supporting Information S1). Our results thus indicate a 4.8° 
(2.9–7.1°, 95% CI) equatorward shift of the surface westerlies during the LGM (20 ka) relative to the mid Holo-
cene (6.5 ka) (Figure 7a). Overall, while our results confirm the tendency of climate models to shift the winds 
poleward in a warming climate (Yin, 2005), the magnitude of the inferred LGM to mid-Holocene wind shift is 
substantially greater than that predicted by any of the models within the PMIP3/4 ensemble between LGM and 
preindustrial states (Figure 8).

Figure 7. Changes in wind latitude, wind strength, wind stress at 60°S and northward Ekman transport at 60°S from the 
Last Glacial Maximum to mid-Holocene. Reconstructed changes in (a) wind latitude (∆Latwind) (b) wind strength (max τu) 
(c) zonal-mean zonal wind stress at 60°S (τu,60S) (d) northward Ekman transport at 60°S. Note, these reconstructions cover 
a longer time period that Figure 6. (b) and (c) Are calculated using the reconstructed changes in wind latitude (a) and the 
relationships between wind latitude and these parameters in the model ensemble (Figure 3). Northward Ekman transport 
at 60°S is calculated using zonal wind stress at 60°S. The 5th, 32nd, 50th, 68th, and 95th percentiles are indicated. The 
displayed uncertainties account for uncertainty in the emergent relationships between pairs of variables due to variations 
across the model ensemble.
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3.5. Reconstructing Wind Strength

The climate model ensemble shows a correlation between the wind latitude and 
the maximum magnitude of the zonal-mean zonal wind stress (wind strength; 
Figure 3d). The tendency for the peak westerly wind stress to decrease as the 
winds move equatorward (and vice-versa) has been previously noted (Barnes 
& Polvani,  2013). Using our ∆Latwind reconstruction and the emergent rela-
tionship between wind latitude and wind strength, we estimate changes in the 
wind strength over deglaciation (Figure 7b), propagating the uncertainties in 
the ∆Latwind reconstruction and in the relationship between the two variables 
via Monte-Carlo simulation. Our reconstructed equatorward shift in the wind 
latitude implies a weakening of the peak westerly wind stress by 0.034 N m −2 
(about 25%) during the LGM relative to the mid Holocene, resulting in a LGM 
wind strength of 0.106 (0.085–0.12, 95% CI) N m −2, assuming mid-Holocene 
wind strength is equal to the modern climatology (0.14 N m −2). This assumption 
is supported by qualitative tracers of the westerlies (Buizert et al., 2018; Lamy 
et al., 2010; Saunders et al., 2018) which indicate little change between ∼6.5 ka 
and the present day, and by running our analysis further into the Holocene 
which shows little change in the position of the winds, although uncertainties 
are large (Figure S4 in Supporting Information S1). We note that as the mech-
anism underlying the relationship between wind position and wind strength 
remains partly unclear (Barnes & Polvani, 2013; McGraw & Barnes, 2016), 
the reconstructed changes in wind strength are more tentative than the recon-
structed changes in wind latitude. The wind strength (max τu) reconstruction is 
provided in Table S3.

The model ensemble shows little change in the shape of meridional wind profile between PI and LGM states; 
there is a −0.25% ± 7% and 0.5% ± 3.5% ensemble mean change in peak width at 50% and 15% peak height, 
respectively, between LGM and PI. Furthermore, we observe no significant relationship between the wind latitude 
and the peak width (at either 50% or 15% peak height) within the ensemble, such that we do not expect substantial 
changes in the shape of the zonal mean wind profile as the winds shift.

3.6. Modeled Impacts of Wind Shift on Ocean Circulation and Biogeochemistry

The similarity of the changes in reconstructed wind latitude and atmospheric CO2 over the deglaciation (Figure 6) 
reinforces the hypothesis of their coupling through Southern Ocean circulation and carbon cycling (Toggweiler 
et al., 2006). While modeling studies typically show a consistent increase in oceanic carbon storage following a 
weakening of the westerlies, the impact of shifts in the latitude of the westerlies is more ambiguous (Gottschalk 
et al., 2019; Lauderdale et al., 2017). However, only global models with a resolution of 1° or coarser have been used 
to study the impact of equatorward wind shift to date (Gottschalk et al., 2019; Lauderdale et al., 2017), possibly 
limiting the sensitivity of the simulated Southern Ocean overturning circulation (Hallberg & Gnanadesikan, 2006; 
Spence et al., 2009). To better understand how changes in the latitude of the westerlies may affect the oceanic 
overturning circulation and carbon cycle, we performed two experiments with a global ocean-sea-ice-carbon 
model with 0.25° horizontal resolution: a Control experiment is forced by climatological atmospheric forcing 
representative of the recent instrumental period; a Perturbed experiment uses the same forcing except for a 
uniform 4° equatorward shift of the Southern Hemisphere westerlies, with no change in their magnitude. Because 
the wind stress forcing in the perturbation experiment does not include the 25% reduction in wind strength (and 
is smaller than our reconstructed LGM shift) this simulation represents a conservative assessment of the impacts 
of an equatorward wind shift alone. The 125-year transient response does not allow quantification of the equi-
librium response of the deep ocean nutrient and carbon cycles (Lauderdale et al., 2017). Nevertheless, it reveals 
clear trends in circulation and biogeochemistry which provide an indication of how the rapidly responding Ekman 
transports may reorganize the overturning and qualitatively impact the carbon cycle on longer timescales.

We find a complete suppression of CO2 outgassing south of 60°S in the Perturbed experiment (Figures 9 and 10), 
with only a partial compensation further north. As such, there is an anomalous uptake of 27 GtC by the Southern 
Ocean south of 35°S over the course of the Perturbed experiment, equivalent to an atmospheric CO2 decrease of 
13 ppm (Figures 9 and 10). Deepwater upwelling and surface nutrient and carbon concentrations are substantially 

Figure 8. LGM-PI change in the PMIP3/4 ensemble. LGM-PI change in wind 
latitude in the PIMP3 (circles) and PMIP4 (triangles) simulations, compared to 
the reconstructed change in ∆Latwind for the period 20–6.5 ka.
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reduced south of 60°S (Figures 9 and 10), indicating that reduced exposure of nutrient and carbon rich deepwaters 
in the polar Southern Ocean underpins the simulated carbon cycle response to equatorward-shifted westerlies 
(Supporting Information S1).

With the winds shifted equatorward relative to their modern position, northward Ekman transports become more 
divergent north of about 60°S, but less divergent south of 60°S (Figure 9). In our simulation, this results in a 
substantial decrease in upwelling within the polar Southern Ocean (Figure  9) and a slowdown of the global 
residual circulation deeper than 2 km (Figure 11; Figure S6 in Supporting Information S1). The decrease in 
deep-ocean overturning results in increased storage of carbon and regenerated nutrients below ∼1.5 km depth, 
concurrent with a decrease in dissolved oxygen (Figures 11 and 12). Conversely, we see an increase in upwelling 
north of 60°S and increased overturning in the upper ocean, concurrent with decreased carbon concentrations in 
the upper ∼1.5 km.

Hence, although shifting the winds equatorward increases the overall Ekman divergence across the South-
ern Ocean (Figures  9c and 11a), it focuses the wind's energy away from isopycnals outcropping carbon-rich 

Figure 9. Modeled impact of equatorward shifted westerlies on Southern Ocean CO2 outgassing. Zonally averaged (a) 
zonal wind stress, (b) northward Ekman transport, (c) Ekman divergence and, (d) ocean-atmosphere CO2 flux (positive 
for ocean outgassing). Black curves correspond to the Control state (CTR) and red curves to the average over years 
116–125 of the Perturbed experiment (PTB). Gray shading on (a–d) indicates the latitudes of the Drake Passage (56–60°S). 
1 Sv = 10 6 m 3 s −1.

Figure 10. Modeled impact of equatorward shifted westerlies on Southern Ocean surface biogeochemistry. Perturbed-Control difference anomalies of (a) 
ocean-atmosphere CO2 flux (mol m −2 yr −1, positive flux for ocean outgassing) and (b) surface nitrate (mmol m −3, averaged over upper 149 m depth) (c) vertically 
integrated (over the upper 149 m) gross phytoplankton production (molC m −2 yr −1). Shown quantities are averaged over years 116–125 of each experiment.
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deepwaters, toward lighter isopycnals containing relatively less carbon, leading to a net increase in oceanic carbon 
storage (Figure 11c). In contrast, some previous studies using coarse-resolution models simulated a decrease in 
oceanic carbon storage in response to an equatorward shift in the westerlies (Gottschalk et al., 2019; Lauderdale 
et  al.,  2017). We attribute this difference to the response of the residual overturning in the Southern Ocean, 
which is likely better captured in our 0.25° simulation (Hallberg & Gnanadesikan, 2006; Spence et al., 2009), but 
acknowledge that other factors (particularly the short length of our simulations) may contribute to the discrepancy.

3.7. Preformed Nutrients, Nutrient Deepening, and Long-Term CO2 Drawdown

The reduction in upwelling within the polar Southern Ocean causes the preformed nitrate concentration of 
Antarctic Bottom Water to decrease (Figure 12). This may be enhanced by a shoaling of the polar Southern 
Ocean mixed layer depth within the simulation (Figure S8 in Supporting Information S1; Figure 10), providing 
a potential mechanism to further increase the utilization of the upwelled nutrients via reduced light limitation 
(Mitchell et al., 1991). Driven by mixed layer shoaling in deepwater formation regions of the North Atlantic 
(Figure S8 in Supporting Information  S1), the preformed nitrate concentration of the northern end member 
also decreases. As such, the ocean's preformed nutrient inventory begins to decrease, while the regenerated 
nutrient content increases, leading to a 1.3% increase in global mean N* (N* = regenerated NO3/total NO3) after 
125 years (Figure 12b). Assuming these transient changes are indicative of the long-term trend, they imply a long-
term increase in the efficiency of the biological pump and decrease in atmospheric CO2 (Ito & Follows, 2005; 
Lauderdale et al., 2017).

While the short duration of the Perturbed experiment inhibits a full quantification of the CO2 response, extrapolat-
ing the initial changes in endmember preformed NO3 based on the relative volume of the ocean each endmember 
represents we can broadly estimate the magnitude of CO2 change implicated by the initial changes in endmember 
preformed nitrate (Supporting Information S1): Based on the initial changes in preformed NO3 within the endmem-
ber  regions we expect a global mean N* increase of ∼5% in the Perturbed experiment relative to the Control, once 
these anomalies have propagated through the deep ocean. Applying the sensitivity of atmospheric CO2 to global 

Figure 11. Modeled impact of equatorward shifted westerlies on deep ocean circulation and carbon storage. (a) Northward 
Ekman transport in the Control (black) and Perturbed (red) simulations. 1 Sv = 10 6 m 3 s −1. (b) Anomaly (Perturbed-Control) 
of the absolute value of global meridional overturning streamfunction after 125 years. We quantify changes in absolute values 
such that blue is a decrease and red is an increase in the magnitude of the overturning rate. Contours show Control (solid) 
and Perturbed (dashed) isopycnals. (c) Dissolved Inorganic Carbon and Oxygen (O2) anomalies (Perturbed-Control global 
horizontal integrals). Zonally averaged concentration anomalies are shown in Figure 12. Gray shading on (a) and (b) indicates 
the Drake Passage. The meridional overturning circulation shown above (and in Figure S6 in Supporting Information S1) 
includes both resolved and parameterized advection (Figure S7 in Supporting Information S1). It is calculated in neutral 
density (Jackett & McDougall, 1997) coordinate and reprojected onto the depth coordinate (Zika et al., 2013) in order to 
eliminate adiabatic recirculations and avoid spurious effects due to vertical inversions in potential density fields.
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preformed nutrients of Ito & Follows (2005), this increase in N* within the Perturbed experiment equates to a long-
term atmospheric CO2 decrease of ∼15 ppm. However, timeseries of the endmember preformed NO3 values indicate 
they are not yet equilibrated and are still decreasing after 125 years such that this likely represents a conservative 
estimate of the increase in N* and associated lowering of CO2 we would expect if the Perturbed experiment was run 
to equilibrium.

The implications of our reconstructed wind changes on atmospheric CO2 are likely to reach beyond the 15 ppm 
CO2 drawdown suggested by the endmember preformed nutrient changes in the perturbation experiment. First, 
the LGM-Holocene wind shift we observe is 4.8° (rather than the 4° forcing applied to the model), suggesting 
the LGM CO2 drawdown from wind shift is likely to be higher. If we assume a linear scaling between wind shift 
and the preformed nutrient changes described above, this would imply ∼18 ppm CO2 drawdown from the impact 
of wind shift on preformed nutrients at the LGM. Furthermore, we also reconstruct a 25% reduction in the wind 
strength that is not accounted for in the perturbation experiment. Earth System Models almost universally suggest 
increased CO2 uptake from reduced wind strength (Gottschalk et al., 2019; Lauderdale et al., 2017), although 
the exact sensitivity of CO2 to wind strength is poorly constrained, and depends somewhat on model resolution 
(Gottschalk et al., 2019). Applying the scaling of ∼4 ppm CO2 per 10% change in wind strength from a large 
compilation of model simulations (Gottschalk et al., 2019), the 25% reduction in the wind strength suggests a 
further CO2 decrease of around 10 ppm. If the impacts of wind shift and strength were additive, this would take 
the combined impact of the reconstructed changes in wind shift and wind strength to ∼28 ppm, without consid-
ering the impacts of nutrient “deepening” on the CaCO3 cycle.

In addition to the reduction in endmember preformed nutrient concentrations, the model indicates a redistribu-
tion of the regenerated nutrient and carbon pools from intermediate depths toward the deep ocean, increasing 
the vertical carbon gradient with equatorward shifted winds (“nutrient deepening”; Figure  12). The deepen-
ing of the regenerated nutrient and carbon pools would drive a further CO2 decrease via carbonate compensa-
tion (Boyle, 1988b; Toggweiler, 1999). While the scaling between preformed nutrients and atmospheric CO2 

Figure 12. MOM5-SIS-Wombat biogeochemical results. Zonally averaged anomalies for Perturbed-Control in (a) regenerated NO3 (mmol m −3), (b) preformed NO3 
(mmol m −3), (c) O2 (mmol m −3), and (d) DIC(mmol m −3). Shown quantities are averaged over years 116–125 of each experiment.
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used above (Boyle, 1988a, 1988b) accounts for a linear approximation of CaCO3 dissolution following the total 
increase in regenerated carbon within the ocean, the effect of nutrient deepening is not accounted for. Based on 
the initial changes we see in deep ocean Dissolved Inorganic Carbon (DIC) in the model (Figure 12d), and the 
scaling between intermediate-deep DIC and atmospheric CO2 given in, we would thus expect a further substan-
tial long-term decrease in CO2, in addition to that implied by the preformed nutrient changes described above 
(Boyle, 1988a, 1988b). Thus, our “best guess” at the total impact of our reconstructed changes in LGM winds on 
atmospheric CO2 is upwards of ∼30 ppm, broadly similar to the magnitude proposed from changes in solubility 
(Sigman & Boyle, 2000) and sea-ice (Marzocchi & Jansen, 2019).

3.8. Proxy Comparison and Overturning Dynamics

The sign of the simulated circulation and carbon cycle changes in response to an equatorward shift in the west-
erlies concur with proxy observations from the LGM of a more sluggish deep ocean circulation (Du et al., 2020; 
Rafter et al., 2022), an increase in regenerated nutrients and carbon within the deep ocean and a redistribution of 
regenerated nutrients and carbon toward the deep ocean (Anderson et al., 2019; Hoogakker et al., 2018; Jaccard & 
Galbraith, 2012; Peterson & Lisiecki, 2018; Rae et al., 2018), as well as with a shoaling of the AMOC (Figure 11; 
Gherardi et  al.,  2009). The simulated decrease in nutrient upwelling and export production within the polar 
Southern Ocean, and the increases further north, are also in good agreement with LGM proxy data (Figure 10; 
Jaccard et al., 2013; Kohfeld et al., 2013; Sigman & Boyle, 2000). While our wind-shift experiment simulates 
a reduction in deep ocean oxygen, in good agreement with the LGM proxy data (Figures 11 and 12; Anderson 
et al., 2019; Hoogakker et al., 2018; Jaccard & Galbraith, 2012), we emphasize that current-generation Earth 
System Models showing increased oceanic carbon storage under glacial forcings via the disequilibrium pump do 
not simulate this reduction in deep ocean oxygen (Eggleston & Galbraith, 2018; Galbraith & de Lavergne, 2019).

The sign of the simulated trends highlighted above is unlikely to be contingent on the limitations of the experi-
mental design, which nevertheless should be emphasized: First, the perturbation is applied abruptly to the modern 
state, and is held only over 125 years. Second, buoyancy forcing only partially adjusts to the changing winds 
since atmospheric temperatures and precipitation remain unperturbed. Third, the simulated response may depend 
partly on parameterizations of eddy effects and vertical mixing. Despite these limitations, the simulated overturn-
ing trends are qualitatively consistent with expectations from theory (Toggweiler & Samuels, 1995) and realistic 
eddy-rich models (Bishop et al., 2016; Dufour et al., 2015; Section 2.4; Figure S7 in Supporting Information S1). 
The decline of the overturning rate below 2 km depth can be explained by the influence of bathymetry on the verti-
cal extent of wind-driven upwelling (Bishop et al., 2016; Toggweiler & Samuels, 1995). Specifically, the presence 
of a zonally continuous channel above 2 km depth at Drake Passage latitudes (56–60°S) favors deeper waters as 
the mass replacement for the surface divergence to its south (Dufour et al., 2015; Toggweiler & Samuels, 1995). 
Displacement of the Ekman divergence from south of 60°S to lower latitudes thus suppresses this privileged 
upwelling pathway of deepwaters (Bishop et al., 2016; Dufour et al., 2015; Toggweiler et al., 2006). Hence, we 
posit that the simulated slowdown of overturning deeper than 2 km is a consequence of its bathymetry-driven 
sensitivity to Ekman transport in the polar Southern Ocean.

This sensitivity to Ekman divergence in the polar Southern Ocean suggests that as the winds shifted poleward 
through the deglaciation, their ability to lift deepwaters to the surface would have increased in tandem with 
the northward Ekman transport at 60°S. To calculate changes in zonal wind stress at 60°S (τu,60S) we use the 
emergent relationship between the wind latitude and the zonal-mean zonal wind stress at 60°S in the model 
ensemble (Figure 3c) and apply this relationship to our reconstruction of ∆Latwind, propagating the uncertain-
ties by Monte-Carlo simulation; the ensemble shows that the wind latitude is a better predictor of wind stress 
at 60°S (R 2  =  0.9; Figure  3c) than is the wind strength (R 2  =  0.7). We assume mid-Holocene wind stress 
equal to the modern climatology (0.09 N m −2; Figure 7c). We then calculate northward Ekman transport at 
60°S (Figure 7d) as the zonal integral of τu,60S/(ρ0*f), where ρ0 is the density of seawater (1,027 kg/m 3), and f 
is the Coriolis parameter. The resultant time series of Ekman transport increases from a minimum of around 
4 Sv during the LGM to around 14 Sv by the mid-Holocene (Figure 7d; the reconstruction of τu,60S and north-
ward Ekman transport at 60°S is provided in Table S3). The resultant invigoration of deep-ocean overturn-
ing over deglaciation (Du et  al.,  2020; Rafter et  al.,  2022; Figure  13) would have driven carbon out of the 
deep-ocean into the upper-ocean and atmosphere. This concurs with records of deep Pacific oxygen (Hoogakker 
et  al.,  2018) and deep Southern Ocean pH (Rae et  al.,  2018), which suggest a loss of regenerated nutrients 
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and carbon from the deep ocean over deglaciation (Figure 13). Furthermore, 
a decrease in the global-mean deep-intermediate carbon isotope gradient 
(Peterson & Lisiecki,  2018; Figure  13), and other carbon cycle tracers 
(Burke & Robinson, 2012; Hoogakker et al., 2018; Rae et al., 2018; Rafter 
et al., 2022), support a weakening of the vertical carbon gradient over degla-
ciation (Figure 13). Finally, records of nutrient utilization (Ai et al., 2020) 
and export production (Anderson et al., 2009) indicate an increase in nutri-
ent upwelling to the Southern Ocean surface over deglaciation, with boron 
isotope records (Martínez-Botí et  al.,  2015) demonstrating a concurrent 
increase in CO2 outgassing.

4. Conclusion
We use new and compiled planktic foraminiferal δ 18O from across the South-
ern Ocean and emergent relationships between SST front latitude, wind 
latitude, wind strength, and zonal wind stress at 60°S within an ensemble 
of climate models to reconstruct changes in the surface westerlies over 
the last deglaciation. We infer a 4.8° (2.9–7.1°, 95% CI) equatorward shift 
and a ∼25% weakening of the westerlies during the LGM relative to the 
mid-Holocene. The reconstructed poleward shift in the westerlies over degla-
ciation is highly correlated with the rise in atmospheric CO2 (R 2 = 0.98). 
We perform new experiments with a 0.25° resolution ocean-sea-ice-carbon 
model which indicate that shifting the westerlies equatorward increases 
oceanic carbon storage.

Our findings support the hypothesis that shifts in the Southern Hemisphere 
westerlies played a role in driving the deglacial rise in atmospheric CO2 
(Menviel et al., 2018), and thus may be an important mechanism (Sigman 
& Boyle,  2000; Toggweiler et  al.,  2006)—alongside changes in solubility 
(Sigman & Boyle, 2000) and Antarctic sea ice (Marzocchi & Jansen, 2019)—
underlying glacial-interglacial CO2 variations. Given that atmospheric CO2 
and global temperature can also influence the latitude of the westerlies (Chen 
et al., 2008; Yin, 2005), a deglacial feedback mechanism has been proposed 
(Toggweiler et al., 2006). The apparent temporal lead of shifts in the wester-
lies over atmospheric CO2 and global temperature suggests that some initial 
change in the winds, perhaps driven by obliquity (Ai et al., 2020; Fogwill 
et al., 2015), could have initiated a cascade of increasing CO2, global warm-
ing, and poleward shifting winds. The tight coupling we infer between west-
erly wind latitude and atmospheric CO2 over the last deglaciation, together 
with the sensitivity of the overturning circulation and carbon cycle to west-
erly wind latitude in our model experiments, suggest that future poleward 
shifts in the westerly winds (Chen et al., 2008; Yin, 2005) may drive a posi-
tive feedback on anthropogenic warming through a decrease in the efficiency 
of the biological pump and an increase in natural CO2 outgassing from the 
Southern Ocean (Menviel et al., 2023).

Data Availability Statement
The new and compiled δ 18O data are given in table Table S1 and are available at Gray (2023b). The R code 
and data used to perform the ∆LatSST analysis is provided at Gray (2023a). The SST front and westerly wind 
reconstructions generated in this study (ΔLatSST, ΔLatwind, wind strength, zonal-mean zonal-wind stress at 60°S 
[τu,60S], northward Ekman transport at 60°S) are given in Tables  S2 and  S3. The PMIP and CMIP data are 
available from https://esgf-node.llnl.gov/projects/esgf-llnl/. The results of the MOM5/SIS/WOMBAT exper-
iment as shown in Figures 9–11 and Figures S6–S8 in Supporting Information S1 are available at Menviel & 
Spence (2021).

Figure 13. Deglacial changes in northward Ekman transport at 60°S with 
deep ocean overturning and carbon cycling. (a) Reconstructed change in 
northward Ekman transport at 60°S over deglaciation (lines show the 5th, 
32nd, 50th, 68th, and 95th percentiles). (b) First principle component of global 
εNd data, representing non-conservative effects on εNd (Du et al., 2020) 
(c) Global volume-weighted deep-intermediate δ 13C gradient (Peterson & 
Lisiecki, 2018) (d) O2 in the deep Pacific (Hoogakker et al., 2018) (fit with a 
LOESS smooth).
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