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ABSTRACT: Internal climate variability confounds estimates of the climate response to forcing but offers an opportunity to

examine the dynamics controlling Earth’s energy budget. This study analyzes the time-evolving impact ofmodes of low-frequency

internal variability on global-mean surface temperature (GMST) and top-of-atmosphere (TOA) radiation in preindustrial control

simulations from phase 6 of the Coupled Model Intercomparison Project (CMIP6). The results show that the slow modes of

variability with the largest impact on decadal GMST anomalies are focused in high-latitude ocean regions, where they have a

minimal impact on global TOA radiation. When these regions warm, positive shortwave cloud and sea ice–albedo feedbacks

largely cancel the negative feedback of outgoing longwave radiation, resulting in aweak net radiative feedback.As a consequence

of the weak net radiative feedback, less energy is required to sustain these long-lived temperature anomalies. In contrast to these

weakly radiating high-latitudemodes, ElNiño–SouthernOscillation (ENSO) has a large impact on the global energy budget, such

that it remains the dominant influence on global TOA radiation out to decadal and longer time scales, despite its primarily

interannual time scale. These results show that on decadal and longer time scales, different processes control internal variability in

GMST than control internal variability in global TOA radiation. The results are used to quantify the impact of low-frequency

internal variability and ENSOon estimates of climate sensitivity from historical GMST and TOA-radiative-imbalance anomalies.
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1. Introduction

Earth’s energy budget forms the basis for understanding

changes in global-mean surface temperature (GMST). Energetic

constraints suggest that surface temperatures will warm until

they give rise to a radiative response that exactly opposes the

radiative forcing from an increase in greenhouse gases. In the

simple case where the global radiative response depends linearly

on theGMST anomalyT(t) (e.g., Gregory et al. 2004), the global

energy flux imbalance N(t) at the top of the atmosphere (TOA)

is given by the sum of a global-mean radiative forcing F(t) and a

global-mean radiative response R(t)5 l(t)T(t) according to

N(t)5F(t)1 l(t)T(t) . (1)

Here, overbars denote a global mean and l(t) is the global ra-

diative response per degree of global surface temperature

change, called the global climate feedback (Charney et al. 1979;

Dessler 2013). The TOA radiative fluxes F(t),R(t), andN(t) are

all defined to be positive for downward radiation anomalies.

The global climate feedbackl provides the basis for determining

Earth’s equilibrium climate sensitivity (ECS), the global-mean sur-

face warming that would result from a doubling of atmospheric

CO2 (and associated radiative forcing F2xCO2
’ 4Wm22) once the

climate system has reached equilibrium (Charney et al. 1979):

ECS52
F

2xCO2

l
eq

. (2)

Here, leq is the global climate feedback at equilibrium.

This energy budget framework has been used to estimate

climate sensitivity from observations (Otto et al. 2013; Lewis

and Curry 2015; Forster 2016; Knutti et al. 2017; Sherwood

et al. 2020). Observational estimates of climate sensitivity rely

on diagnosing the global climate feedback lobs from the ob-

served GMST change Tobs and the corresponding radiative

response Robs 5Nobs 2Fobs:
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EffCS is the effective climate sensitivity corresponding to the

feedback lobs. For example, Otto et al. (2013) estimate the

climate sensitivity based on decadal anomalies in GMST

(Tobs), radiative forcing (Fobs), and global ocean heat uptake

(an estimate of Nobs) relative to preindustrial values.

The EffCS in observations can differ from the ECS (i.e., lobs 6¼
leq) because the radiative response to warming depends not

only on GMST but also on the spatial pattern of warming (e.g.,

Armour et al. 2013;Andrews et al. 2015; Zhou et al. 2017; Dong

et al. 2019). Assuming a linear superposition of the radiative

feedbacks from warming in different regions, the global cli-

mate feedback l can be expressed as

l5l(r)T 0(r) , (4)

where T 0(r)[T(r)/T is the local surface warming normalized

by the global-mean surface warming (i.e., the spatial pattern of

warming) and l(r)[ ›N/›T(r) quantifies the global-mean

TOA radiative response to local warming T(r).

To constrain l(r), some studies have taken a forward mod-

eling approach, imposing warming in different regions andCorresponding author: Robert C. Jnglin Wills, rcwills@uw.edu
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examining the global radiative response (Zhou et al. 2017;

Dong et al. 2019). They find that the global radiative response

can be reconstructed from the pattern of surface temperature

anomalies using a Green’s function approach. However, this

Green’s function depends on the climate model used and is

difficult to validate with observations. It is also possible to

constrain l(r) by simply regressing global TOA anomalies

against local temperature. This has been used to examine the

dependence of the global cloud radiative effect on local tem-

perature in climate model simulations and observations (Zhou

et al. 2017), but as these authors point out, it does not account

for the correlations between temperature anomalies in differ-

ent regions. Multiple linear regression can be used to account

for the correlation between local surface temperature predic-

tors of N in climate model output (Bloch-Johnson et al. 2020),

but this problem becomes underconstrained when looking at

the short observational record.

An alternative approach is to use dimension reduction to

determine a few relevant patterns of temperature variability

(i.e., modes of variability) and examine their impact on T and

N. In the case where a forced climate change can be re-

constructed as the sum of changes DX in the indices of all

relevant climate modes (cf. fluctuation–dissipation theorem),

the success of the Green’s function approach used by Zhou

et al. (2017) andDong et al. (2019) suggests that the total global

climate feedback could be determined by

l5
�
X

(›N/›X)DX

�
X

(›T/›X)DX
. (5)

In this way, an analysis of the global temperature and radiative

impacts of internal variability can give mechanistic insights into

the global climate sensitivity in response to external forcing.

Modes of sea surface temperature (SST) variability such as

Atlantic multidecadal variability (AMV), Pacific decadal var-

iability (PDV), and El Niño–Southern Oscillation (ENSO)

have all been argued to play leading roles in the decadal

modulation of GMST, ocean heat content, and the TOA en-

ergy imbalance, such as is thought to have occurred during the

so-called global warming hiatus, from 1998 to 2013 (Meehl

et al. 2011; Trenberth and Fasullo 2013; Kosaka and Xie 2013;

England et al. 2014; Liu et al. 2016). In this way, internal var-

iability can lead to contributions to Tobs and Nobs that are not

representative of the forced response, confounding estimates

of the climate response to external forcing based on Eq. (3).

However, there is no consensus on the relative importance of

these different modes for variability in global climate. Some

studies emphasize the importance of processes in the eastern

equatorial Pacific (Meehl et al. 2011, 2013; Kosaka and Xie

2013; Trenberth and Fasullo 2013; England et al. 2014; Risbey

et al. 2014; Liu et al. 2016), while others emphasize processes in

the North Atlantic (Zhang et al. 2007; Keenlyside et al. 2008;

DelSole et al. 2011; Muller et al. 2013; Chen and Tung 2014;

Tung et al. 2018; Stolpe et al. 2018; Li et al. 2020) or the

Southern Ocean (Martin et al. 2013; Latif et al. 2013; Brown

et al. 2015; Cabré et al. 2017). These different conclusions

arise in part because different models emphasize processes in

different regions (Brown et al. 2015; Parsons and Hakim 2019;

Parsons et al. 2020) and in part because the relationships be-

tween local temperature, global temperature, and global TOA

radiation depend on the time scale of variability (Brown et al.

2015; Lutsko and Takahashi 2018).

In this paper, we quantify the impact of modes of low-

frequency (interdecadal) SST variability on GMST and the

global-mean TOA radiation flux (GMTOA) in coupled climate

models. Traditional indices of low-frequency variability (e.g.,

PDV,AMV, etc.) are problematic for this analysis for a number of

reasons. For one, they are not in general independent of each

other. This by itself could be circumvented with multiple linear

regression. However, traditional indices are also highly sensitive

to subtleties of their definitions (Frankcombe et al. 2015; Stolpe

et al. 2017) and have been shown to mix together physically dis-

tinct processes that may have different impacts on global climate

(Newman et al. 2016; Wills et al. 2019a,b). Principal component

analysis provides a promising candidate for defining independent

climate indices, but it also has the tendency to mix together pro-

cesses that occur on different time scales and in different regions

(Chen andWallace 2016; Chen and Tung 2017; Wills et al. 2018).

We therefore use low-frequency component analysis (LFCA;

Wills et al. 2018) to identify modes of interdecadal variability.

This method identifies linear combinations of principal compo-

nents that isolate variability at decadal and longer time scales.

We use lead–lag regressions of GMST and GMTOA anomalies

onto these slow modes of variability to quantify their time-

evolving impacts on global climate and their influence on EffCS.

We also contrast the global climate impacts of interdecadal

variability with those of interannual ENSO variability, because

ENSO influences GMST and the global energy budget across a

wide range of time scales.

This paper is organized as follows. We describe the CMIP6

output and methods used in section 2. In section 3, we describe

the slow modes of internal variability in CMIP6 models and

quantify their impacts on GMST and GMTOA. We also quan-

tify the impacts of ENSO on decadal variability in GMST and

GMTOA for comparison. In section 4, we diagnose the local

shortwave and longwave components of GMTOA variability

and discuss themechanisms governing the slowmodes of climate

variability and their impacts on GMTOA. In section 5, we

quantify the impact of modes of internal variability on estimates

of climate sensitivity and discuss the future work needed to

apply this model-based understanding toward attributing ob-

served changes in Earth’s energy budget. In section 6, we sum-

marize our findings and present our conclusions.

2. Methods and climate model output

a. Low-frequency component analysis

Wills et al. (2018, hereafter W18) demonstrate a statistical

methodology—low-frequency component analysis (LFCA)—to

identify characteristic spatial anomaly patterns of low-frequency

variability. LFCA is based on linear discriminant analysis, which

has been used for a number of other applications within climate

science (Déqué 1988; Schneider and Griffies 1999; Venzke et al.

1999; Schneider and Held 2001; DelSole 2001; Ting et al. 2009;

DelSole et al. 2011; Wills et al. 2020). W18 show that LFCA can
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separate the influences of global warming, PDV, and ENSO on

Pacific SSTs based on differences in their spatial patterns and

time scales. Subsequent papers (Wills et al. 2019a,b; Oldenburg

et al. 2021) have shown that LFCA isolates the processes con-

trolling low-frequency variability from those that are important

at higher frequencies, for example isolating the role of ocean

circulation changes in AMV and PDV.

LFCA solves for low-frequency patterns (LFPs), which are the

linear combinations of a chosen set of empirical orthogonal func-

tions (EOFs) that maximize the ratio of low-frequency to total

variance in their corresponding time series [low-frequency com-

ponents (LFCs)]. Here, we define low-frequency variance as that

whichmakes it through a 10-yr low-pass filter. In this way, patterns

of interdecadal variability show up as the leading LFPs, and LFP-1

is the linear combination of the included EOFs with the highest

possible ratio of interdecadal-to-intradecadal variance. LFPs and

LFCs are normalized such that theLFP shows the anomaly pattern

corresponding to a one-standard-deviation anomaly in the corre-

sponding LFC, which has unit variance. The LFCs are mutually

uncorrelated, but there can be pattern correlation between the

LFPs. The main hyperparameter in this analysis is the number n

of EOFs retained. W18 explores the sensitivity to n for short

(;100yr) observational datasets; however, we find that our results

are insensitive to 50 # n # 500 for the large multimodel dataset

analyzed here, where the leading ;180 EOFs are well sampled

according to the North et al. (1982) criterion.

By first solving for the EOFs of the unfiltered data, LFCA

uses information about the spatiotemporal covariance of both

low-frequency and high-frequency variability (i.e., the leading

LFC has the highest ratio of low-frequency to high-frequency

variance, whereas the leading principal component of low-pass

filtered data would have the highest total low-frequency vari-

ance). Patterns of intradecadal variability (such as ENSO)

therefore show up as the trailing LFCs. In this way, LFCA

provides a new basis for the variability contained within the n

leading EOFs that is sorted by time scale. We also analyze the

interannual ENSO signal captured by the least-low-frequency

component (LLFC), which is the nth LFC (i.e., the linear

combination of the included EOFs with the lowest possible

ratio of interdecadal-to-intradecadal variance).

b. CMIP6 preindustrial control output

We analyze output from preindustrial control (piControl) sim-

ulations of 35 coupled climate models from CMIP6 (Eyring et al.

2016). External forcing from greenhouse gasses, aerosols, ozone,

and solar variability is fixed at preindustrial levels throughout the

simulations.We use the last 400 years of monthly output from each

model’s piControl simulations such that we include a total of 14000

years of unforced variability in our analysis. For eachmodel, output

is quadratically detrended and linearly interpolated to a common 28
analysis grid. SSTs are computed from surface temperature output

by setting allmonthly values below the freezing point of seawater to

the freezing point and masking out land. This avoids interpolating

from each model’s irregular ocean grid. GMST anomalies are

computed from surface temperature. TOA radiation anomalies are

computed from the outgoing longwave radiation and reflected

shortwave radiation, because incoming shortwave radiation does

not vary about its climatological seasonal cycle in these simulations.

We compute anomalies with respect to each model’s cli-

matological seasonal cycle such that intermodel differences in

climatology are not included in the analysis. We concatenate

each model’s SST anomaly matrix into one large anomaly

matrix for the multimodel ensemble. LFCA is then used to

compute the leading LFPs of global SST anomalies across all

35 piControl simulations. We retain n 5 65 EOFs to capture

63% of the total SST variance. The 10-yr low-pass filter (used

to find the LFPs) is applied to each model separately to avoid

filtering over the discontinuities between models.

Like principal component analysis, LFCA can mix together

processes occurring in different regions. This is especially true for

patterns with similar eigenvalues (i.e., similar ratios of interdecadal-

to-intradecadal variance). For LFPs with similar eigenvalues, we

apply a secondary rotationof the resultingLFPs inorder to spatially

localize them (cf. Kaiser 1958). In this rotation, the pattern corre-

lation between LFPs is computed in specified regions: the Atlantic

(458S–808N), theNorthPacific (208–708N), and theSouthernOcean

(358–808S). The pattern correlations between a pair of LFPs within

each region make up one element of a matrix, the eigenvectors of

which give linear combination coefficients that define the new ro-

tated patterns. This rotation is applied separately for sets of LFPs

for which the variance ratio is similar (LFPs 4–6 in our case). For

example, the rotated LFP-40 is a linear combination of the original

LFPs 4–6, where primes denote a rotated pattern. No rotation is

needed for LFPs 1–3, because these patterns have distinct ratios of

low-frequency to total variance in our particular analysis.

c. Lead–lag regression analysis

The assessment of the impact of internal variability on global

climate is complicatedby thephase lagsbetweenGMST,GMTOA,

andmodes of internal variability (Brown et al. 2014; Xie et al. 2016;

Proistosescu et al. 2018; Lutsko and Takahashi 2018). In this study,

we take the simple approach of computing a lead–lag regression of

GMST and GMTOA against each index of internal climate vari-

ability. This allows us to show the time-evolving impact of each

mode of variability on global climate (e.g., Fig. 1). The time evo-

lution of GMST and GMTOA impacts results primarily from

changes in the SST anomaly pattern over time, rather than from

lead–lag responses to a fixed SST pattern. For examples of the time

evolution of the SST patterns, see Fig. 6 of Wills et al. (2019a) and

Fig. 4 ofWills et al. (2019b). It is important tonote that theLFCsare

only uncorrelated at lag 0, and lag 0 is therefore the only lag where

impacts on GMST and GMTOA are additive. An alternative ap-

proach would be to compute the cross spectra of GMST and

GMTOA with each mode of variability. However, by allowing for

different phase lags betweenGMST/GMTOAand theLFCat each

frequency, this method would not take advantage of the orthogo-

nality of the LFCs at lag 0 and would complicate an assessment

of the relative contributions of different modes of low-frequency

variability to global climate anomalies.

3. Slow modes of SST variability and their impact on
global climate

The first six LFPs of the CMIP6 ensemble are shown in

Fig. 1. LFP-1 and LFP-2 both show low-frequency variability of

SST in the high-latitude oceans, with LFP-1 focused in the
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FIG. 1. Low-frequency patterns (LFPs) 1–6 of CMIP6 piControl simulations and their impacts on GMST and GMTOA. (left) The SST

anomaly pattern (LFP). (center) The lead–lag regression of monthly GMST anomalies on the associated low-frequency components

(LFCs). (right) The lead–lag regression of monthly GMTOA anomalies on the associated LFCs; negative values indicate a loss of energy

to space. Black lines show the same lead–lag regressions, but for the 10-yr running mean GMST and GMTOA anomalies. Positive lags

indicate anomalies that occur after the maximum anomaly in the LFC. All calculations are averaged over 35 CMIP6 models. A secondary

rotation has been applied to LFPs 4–6 in order to localize them within ocean basins, as described in section 2b.
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North Atlantic and LFP-2 focused in the Southern Ocean.

LFP-1 is similar to the AMV-like pattern found by LFCA of

Atlantic SSTs (Wills et al. 2019a), with a temporal correlation

of 0.94, and is also highly coherent (0.89) with the traditional

AMV index (Zhang et al. 2019) on decadal and longer time

scales. LFP-2 is similar to the leading LFP of Southern Ocean

SSTs when they are analyzed separately (not shown). LFP-3 is

similar to the PDV; in particular, it has a spatial pattern similar

to the PDV in observations (Mantua et al. 1997), a high coher-

ence (0.96) with the traditional PDV index (Mantua et al. 1997)

on decadal and longer time scales, and a temporal correlation of

0.87 with the LFC-PDV index defined by LFCA of Pacific SSTs

(Wills et al. 2019b). We find similar patterns of low-frequency

internal variability in CMIP5 piControl simulations (not shown).

While these LFPs explain less of the total SST variance than the

leading EOFs (2.0%, 1.1%, and 2.1%, respectively, vs. 11%,

3.3%, and 2.6% for the leading EOFs), they explain more of the

SST variance on decadal and longer time scales (11%, 5.0%, and

7.0%, respectively, vs. 8.9%, 5.0%, and 2.8% for the leading

EOFs). Note that theLFPs show the SSTpattern associatedwith

the correspondingLFCs at lag 0, and lead–lag regressions of SST

anomalies onto the LFCs show time-evolving SST patterns

(Wills et al. 2019a,b).

The next three LFPs show secondarymodes of low-frequency

SST variability in the Southern Ocean, Pacific, and North

Atlantic, respectively. Because they all have similar ratios of

interdecadal-to-intradecadal variance, a secondary rotation was

applied to localize them spatially (see section 2b). LFP-40 shows
an SST anomaly dipole between the Weddell and Amundsen–

Bellingshausen Seas, a mode of variability identified (in GFDL

CM2.1) by Zhang et al. (2017). LFP-50 shows warming of the

North Pacific, with some extension into the tropical Pacific along

the path of the Pacific meridional mode (Chiang and Vimont

2004). It resembles the Victoria Mode (Bond et al. 2003), which

is similar to the SST signature of the North PacificGyreOscillation

(NPGO; Di Lorenzo et al. 2008). It also shows a concurrent

SST anomaly dipole in the subpolar North Atlantic. LFC-60 is
similar to the second LFP of the Atlantic-only analysis of Wills

et al. (2019a), showing an SST anomaly in the subpolar gyre

and opposite signed SST anomalies in the Gulf Stream,

Greenland–Iceland–Norwegian (GIN) Seas, and Barents Sea,

a well-knownmode of Atlantic decadal variability (e.g., Menary

et al. 2015). Several modes identified by our analysis show

midlatitude SST anomalies in both the Atlantic and Pacific,

possibly related to interbasin teleconnections (e.g., Zhang and

Delworth 2007). However, such interbasin relationships should

be interpreted with caution, as spatial covariance analyses such

as this one are known to show coherent anomalies in regions that

are only weakly correlated (Deser 2000).

The first six LFPs all have red power spectra (Fig. 2a), with

variance increasing out to multidecadal and centennial time

scales. In this analysis of anomalies from the climatological

seasonal cycle, the annual peak in the power spectra arises

from the tendency of SST anomalies to reemerge each winter

(Alexander et al. 1999). While the multimodel mean power

spectra do not show distinct spectral peaks at interannual and

longer time scales, this does not rule out the possibility of

spectral peaks in individual models.

a. Impacts on GMST

We assess the impacts of the slow modes of variability on

GMST by computing the lead–lag regression of GMST anom-

alies onto eachLFC (center columnof Fig. 1). Note that the time

evolution of theGMST anomalies results in part from changes in

the SST anomaly pattern over time. The modes of high-latitude

warming represented by LFP-1 and LFP-2 have large and long-

lived impacts onGMST that are 0.0568 and 0.0418C per standard

deviation at their maxima, respectively. The persistence of

these patterns is such that a one-standard-deviation anomaly in

the respective indices is associated with a 0.0478 and 0.0298C
anomaly in decadal running-mean GMST (black lines in the

center column of Fig. 1). For reference, the standard deviation

of decadal-running-mean GMST anomalies in the composite

of the 35 CMIP6 piControl simulations is 0.0778C. These two

modes of low-frequency variability therefore explain ;37% and

;14% of the variance in decadal-running-mean GMST, respec-

tively. The impact of thesemodes onGMST is also evident in their

coherence with GMST out to centennial time scales (Fig. 2b).

FIG. 2. (a) Power spectral density of the low-frequency compo-

nents (LFCs). (b) Squared coherence between the LFCs and

GMST. (c) Squared coherence between the LFCs and GMTOA.

All panels also show Niño-3.4 and the least-low-frequency com-

ponent (LLFC) for comparison. The LLFC is strongly correlated

with Niño-3.4 and is discussed in more detail in the text. All cal-

culations are averaged over 35 CMIP6 piControl simulations.
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The large impacts of LFP-1 and LFP-2 on GMST evident in the

multimodel composites (Fig. 1) result in part from the large am-

plitudes of thesemodes in a fewmodels. LFP-1 is particularly active

in EC-Earth3, CNRM-ESM2.1, CNRM-CM6.1, and IPSL-CM6A-

LR (Fig. 3), allmodels that use theNucleus forEuropeanModeling

of theOcean (NEMO) oceanmodel. LFP-2 is particularly active in

BCC-CSM2-MR, GFDL-ESM4, IPSL-CM6A-LR, EC-Earth3,

BCC-ESM1, and GFDL-CM4 (Fig. 3), all models that use ver-

sions of either the Geophysical Fluid Dynamics Laboratory’s

Modular Ocean Model (MOM) or NEMO. These models are all

among the CMIP6 models with the most interdecadal GMST

variability (Parsons et al. 2020).However, evenmodels that are not

among these outliers show impacts of LFC-1 and LFC-2 on de-

cadal GMST variability of ;0.038 and ;0.0188C per standard

deviation, respectively (as shown in section 5), and the samemodes

are found when these outlier models are excluded (not shown).

The impact of the PDV-like LFP-3 on GMST has a more com-

plex temporal evolution, with its peak impact on GMST of 0.0188C
occurring in the year before the LFC-3 maximum followed by a

quick transition to a decade of anomalously cold temperatures

(Fig. 1). Compared to LFP-1 and LFP-2, the amplitude of LFP-3 is

relatively consistent across models (Fig. 3). However, the sign of

LFP-3’s lag-0 impact on decadal-mean GMST is not robust across

models (as shown in section5), a consequenceof theopposite-signed

impacts at lead and lag times. LFP-3 does have a robust negative

impact on the rate of GMST change over the course of a decade (as

shown in section 5), which is consistent with other studies that have

identified the PDV as playing a role in decades of reduced GMST

rise (i.e., hiatus decades; Meehl et al. 2011, 2013; Kosaka and Xie

2013; Trenberth and Fasullo 2013; England et al. 2014; Liu et al.

2016;Middlemas andClement 2016).This couldpartially result from

the tendency of positive PDV anomalies to follow El Niño events,

which have a large impact on GMST (Pan and Oort 1983; Wigley

2000; Trenberth et al. 2002) and influence the North Pacific through

the atmospheric bridge (Alexander et al. 2002). The coherence of

LFC-3 and GMST is largest at 4–20-yr time scales (Fig. 2b). The

impact of LFC-50 onGMST is actually somewhat larger than LFC-3

at 4–20-yr and longer time scales (Fig. 2b). LFC-50 has a peak impact

on GMST of 0.0368C that occurs contemporaneously with the

maximum in the SST pattern (i.e., at lag 0; Fig. 1).

Due to their confinement to high latitudes and their can-

celling positive and negative temperature anomalies in differ-

ent regions, LFP-40 andLFP-60 have relatively small impacts on

GMST (Fig. 1), even at multidecadal time scales (Fig. 2b).

b. Impacts on GMTOA

Internal variability in GMTOA has much less power at de-

cadal and longer time scales than does internal variability in

GMST; while 25% of internal GMST variability is on decadal

and longer time scales, only 1% of internal GMTOA variability

is on these time scales (Fig. 4a). Variability in GMTOA is es-

sentially white (i.e., its power spectral density does not vary with

time scale) except for peaks in the ENSO band (3–5 yr) and at

annual time scales. Variability in TOA radiation is highly co-

herent with variability in the net surface heat flux on decadal and

longer time scales (Fig. 4b), such that the GMTOA anomaly is

approximately the rate of global ocean heat uptake (cf. Palmer

et al. 2011). The squared coherence betweenGMSTandGMTOA

is less than 0.4 at all time scales greater than a decade (Fig. 4b),

suggesting that what TOA radiation variability there is at

long time scales is not determined by surface temperatures

(cf. Lutsko and Takahashi 2018). This also suggests that the

mechanisms controlling GMST at decadal and longer time

scales do not have a big influence on GMTOA at these

time scales.

We assess the impacts of the slow modes of variability on

GMTOA by computing the lead–lag regression of GMTOA

anomalies onto each LFC (right column of Fig. 1). Note that

the time evolution of the TOA anomalies results in part from

changes in the SST anomaly pattern over time. LFP-1 has a

persistent TOA radiative impact of 20.011Wm22 in the

decade following its maximum (Table 1), indicating a loss

of energy from the Earth system following the warm phase

of LFP-1. This GMTOA anomaly is small compared to the

standard deviation of decadal-running-mean GMTOA anom-

alies (0.070Wm22), such that LFP-1 accounts for less than 3%

of the variance in GMTOA at decadal and longer time scales.

The squared coherence between LFC-1 and GMTOA anom-

alies does not exceed 0.2 at any time scale (Fig. 2c). Thus, while

LFP-1 is a major driver of decadal variability in GMST, it has a

minimal impact on GMTOA.

The amplitude of global radiative anomalies associated with

LFP-2 is similarly small (Fig. 1; Table 1). In addition to the weak

but long-lived loss of energy after the warm phase of LFP-2, there

is a net input of energy to the Earth system in the decades prior.

This is evidence that LFP-2 is partially driven by TOA radia-

tive anomalies. In section 4, we discuss the particular radiative

FIG. 3. Amplitude (standard deviation) of the three leading low-

frequency components (LFCs) in each of the 35 CMIP6 piControl

simulations, normalized by their amplitude in the multimodel

composite.
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anomalies responsible, which point to a large role of the sea ice–

albedo feedback in the multidecadal variability of Southern

Ocean temperature. LFC-2 has modest coherence with GMTOA

anomalies at 20–50-yr time scales (Fig. 2c), but with GMTOA

lagging by ;908 (or, equivalently, 2GMTOA leading by ;908).
The warm phase of LFP-3 is associated with a short-lived

negative global radiative response (energy out of the Earth sys-

tem) followed by a persistent cooling of GMST and an associated

positive global radiative response (energy into the Earth system;

Fig. 1).Despite the shorter time scale of LFC-3 compared toLFC-

1 and LFC-2, the associated anomalies in decadal running-mean

GMTOA are nearly as large. LFP-50 has a similar magnitude of

impact onGMTOA to LFP-3, but with a different time evolution.

Like LFP-2, LFP-50 appears to be amplified by global radiative

feedbacks (i.e., during the evolution of an LFP-50 warm event,

TOA radiative fluxes are warming the surface at lead times and

cooling the surface at lag times). LFP-40 leads to TOA energy loss

in the ;5 years following its maximum. LFP-60 has a minimal

impact on GMTOA. One overall takeaway is that the time evo-

lution of global radiative feedbacks varies widely across different

types of low-frequency variability.

c. Impact of ENSO on global climate at decadal time scales

The dominant mode of interannual variability in the climate

system is ENSO, which is often characterized by the Niño-3.4
index (SST anomalies averaged over 58S–58N, 1208–1708W).

The broader SST anomaly pattern associated with Niño-3.4,
based on a regression of local SST anomalies on the Niño-3.4
index, is shown in Fig. 5. In the models studied, Niño-3.4 var-

iance peaks at 3–5-yr time scales (Fig. 2a). Here, we are in-

terested in characterizing the impact of ENSO on global

climate at decadal and longer time scales.

Because Niño-3.4 can be correlated with the leading LFCs

(e.g., it has a correlation of 0.12 with LFC-3), we also consider

the representation of ENSO within the LFCA. Although

ENSO has power at decadal and longer time scales (Fig. 2a), its

large amplitude at interannual time scales gives it a low ratio of

interdecadal-to-intradecadal variance. For this reason, much of

the ENSO-like variance is captured by the least-low-frequency

component (LLFC; Fig. 5), which is the linear combination of

the included EOFs with the minimum ratio of interdecadal-to-

intradecadal variance. The correlation between the LLFC and

Niño-3.4 is 0.77. Their spatial patterns are similar in the equa-

torial Pacific (within6108 of the equator; Fig. 5), but the LLFC
does not include associated SST anomalies in the extratropical

North and South Pacific and in the Indian Ocean. Similar to

Niño-3.4, the LLFC has its peak amplitude at 3–4-yr time scales;

however, it has a factor of 2 less variance than ENSO at decadal

and longer time scales (Fig. 2a). This shows that the LLFC iso-

lates the interannual component of ENSO. The LFC with

the next-highest correlation with the Niño-3.4 index is LFC-60

(i.e., the fifth LLFC), with a correlation of 0.32. LFC-60 shows

warming in the central equatorial Pacific, cooling in theKuroshio–

Oyashio Extension, and a positive anomaly in the Indian Ocean

dipole (IOD) (not shown), as is characteristic of central Pacific

El Niño events (Takahashi et al. 2011; Capotondi et al. 2015;

Timmermann et al. 2018). Together these two LLFCs account for

69% of the variance in Niño-3.4.
ENSO, as captured by Niño-3.4, has a large impact on

GMST (Pan and Oort 1983; Wigley 2000; Trenberth et al.

2002). In the CMIP6 models, the maximumGMST anomaly of

0.088C per standard deviation occurs 2–3 months after the

maximum Niño-3.4 anomaly (Fig. 5). There are also weaker

FIG. 4. (a) Power spectral density of GMST and GMTOA.

(b) Squared coherence betweenGMST andGMTOAand between

GMTOA and the global-mean net surface heat flux (ocean heat

uptake). All calculations are averaged over 35 CMIP6 piControl

simulations.

TABLE 1. Multimodel median statistics of decadal GMST and GMTOA variability. The stdev. column gives the standard deviation of

each quantity. The LFC-1, LFC-2, LFC-3, LLFC, and Niño-3.4 columns give the lag-5 covariance of the corresponding quantity with each

of these indices (i.e., the anomaly in the decade following the maximum in each index, in units of the corresponding quantity per standard

deviation). The global climate feedback is calculated as the 10-yr running-mean GMTOA anomaly divided by the 10-yr running-mean

GMST anomaly. The lag-5 covariance is used because of intermodel differences in the sign of someGMST andGMTOA anomalies at lag

0 (see section 5).

Stdev. LFC-1 LFC-2 LFC-3 LLFC Niño-3.4

10-yr running-mean GMST (8C) 0.063 0.021 0.016 20.005 0.003 0.005

10-yr running-mean GMTOA (W m22) 0.064 20.011 20.009 0.004 20.010 20.017

Global climate feedback (W m22 K21) 21.03 20.50 20.57 20.70 22.94 23.20
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negative GMST anomalies at6;2 years, which are associated

with the structure of the ENSO autocorrelation, because there

is a tendency for La Niña years to follow El Niño years. The

positive GMST anomaly associated with the LLFC is notably

muted compared to that associated with Niño-3.4; it peaks at
0.058C per standard deviation at a lag of 5–6 months (Fig. 5).

The LLFC leads Niño-3.4 by 1–2 months, which explains the

greater GMST lag.

The coherence with GMST as a function of time scale is

markedly different between Niño-3.4 and the LLFC (Fig. 2b);

while they have similarly large coherence with GMST in the

ENSO band (2–5 yr), the coherence between the LLFC and

GMST drops off quickly at longer time scales, such that there

is no significant coherence between the LLFC and GMST at

30-yr and longer time scales. In contrast, Niño-3.4 still has a

squared coherence of;30% with GMST at time scale ranging

frommultidecadal to centennial, although Niño-3.4 variance is
small at these time scales. This analysis suggests that some of

the impact of ENSO on GMST, especially that at decadal and

longer time scales, comes from its teleconnections to regions

outside the equatorial Pacific (which are not emphasized in

the LLFC).

The impact of ENSO on GMTOA is asymmetric about lag 0

(Fig. 5), meaning that the energy content of the Earth system is

maximum near the peak of El Niño events, a result that has

been confirmed in observations (Johnson and Birnbaum 2017).

Peak energy input into the Earth system is 0.13Wm22 per

standard deviation 7 months before Niño-3.4 maxima and the

peak energy loss is 0.21Wm22 per standard deviation 6 months

after Niño-3.4 maxima. The lead–lag covariance between

GMTOA and ENSO is similar when quantified based on the

LLFC, with modest changes in the peak radiative anomalies

and a ;2-month shift in the timing. Niño-3.4 and the LLFC

explain a similarly large fraction of GMTOA variance in the

ENSO band (3–5 yr), but the LLFC explains significantly

less at longer time scales (Fig. 2c).

While the LLFC captures many of the same features of

ENSO’s impact on global climate as Niño-3.4, it removes most

of its variance and associated impacts on decadal and longer

time scales. The LLFC removes some of the asymmetry be-

tween El Niño and La Niña events (not shown), and it may

therefore underestimate the influence of extreme El Niños on
global climate. On the other hand, Niño-3.4 is not independent
of LFC-3, especially on time scales between 7 and 40 years,

where their squared coherence (shared variance) is 0.3. These

caveats should be kept in mind when using either index. To

include the full range of ENSO impacts on global climate, we

will focus on the more widely used Niño-3.4 index for the

analysis in the following sections.

d. Comparison of global climate feedbacks

We have shown that the leading modes of low-frequency vari-

ability have a large impact on GMST but a small impact on

GMTOA (Figs. 1 and 2b,c). To quantify the global radiative feed-

back associated with these modes and compare with the global ra-

diative feedback associated with ENSO, we focus on the global

climate anomalies in the decade following the maximum in each

index (i.e., the 5-yr lagged covariance between 10-yr running mean

GMST orGMTOAand each index; Table 1). This approach avoids

near zero decadal-mean GMST anomalies associated with LFC-3

and the LLFC at lag 0 (Figs. 1 and 5). The ratio of the GMTOA

anomaly and the GMST anomaly quantifies a global climate feed-

back associated with each mode of variability in the decade fol-

lowing itsmaximum [i.e., considering onemode at a time inEq. (5)].

GMTOAanomalies are defined as negative for energy loss from the

Earth system, by convention, such that negative values of the global

FIG. 5. ENSOand its impacts onGMSTandGMTOA, as characterized by (top)Niño-3.4 and (bottom) the least low-frequency component

(LLFC). (left) The SST anomaly pattern per standard deviation in the associated index. (center) The lead–lag regression of monthly GMST

anomalies on the associated normalized ENSO index. (right) The lead–lag regression of monthly GMTOA anomalies on the associated

normalized ENSO index. Black lines show the same lead–lag regressions, but for the 10-yr running means of GMST and GMTOA. Positive

lags indicate anomalies that occur after the maximum anomaly in the ENSO index. All calculations are averaged over 35 CMIP6 models.
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climate feedback quantify the strength of the negative (damping)

feedback. The global climate feedbacks for LFC-1 and LFC-2 are

small: 20.50 and 20.57Wm22K21, respectively (Table 1). For

comparison, the global climate feedback associated with an ECS of

3.58C is approximately 21.1Wm22K21. If the global climate

feedback was 20.5Wm22K21 for a warming in response to

greenhouse gas emissions, this would correspond to an ECS of 88C
[Eq. (2)]. The global climate feedback associated with the cooling

following a warm phase of LFC-3 is only slightly stronger:

20.70Wm22K21.

In contrast, ENSO has a small impact on decadal-meanGMST

but a large impact on decadal-mean GMTOA (Table 1). This

results in a large global climate feedback associatedwith the decay

phase of ENSO: 22.94 or 23.20Wm22K21 when quantified by

theLLFCorNiño-3.4, respectively.Radiative feedbacks this large

for a warming in response to greenhouse gas emissions would

correspond to anECS of 1.258C. In section 5, we consider how the

contrasting global radiative feedback strengths associatedwith the

LFCs and ENSO lead to differences in their effects on estimates

of climate sensitivity from short records.

4. Mechanisms of global radiative feedback

A key conclusion of our analysis thus far is that LFC-1 and

LFC-2 have a weak global radiative feedback, such that their

large impact on GMST on decadal and longer time scales does

not translate into a large impact on GMTOA. In this section,

we examine the particular global energy budget changes that

result in LFC-1 and LFC-2 having a weak global radiative

feedback and compare to the global energy budget changes

associated with LFC-3 and Niño-3.4. We focus on changes

during the positive phases of these modes of variability, but the

linearity of our analysis implies that the same conclusions also

apply, with opposite sign, to the negative phases of thesemodes

of variability.

a. Atlantic multidecadal variability

Atlantic multidecadal variability (AMV), as characterized

by LFC-1, has a small GMTOA anomaly due to the net result

of large cancelling anomalies in the longwave (LW) and

shortwave (SW) components (Fig. 6a). In the warm phase of

the AMV, there is anomalous global energy loss resulting

from a strengthening of outgoing longwave radiation. This

negative feedback acts to damp the warm temperature anom-

alies. LW anomalies are largest in the high latitudes of the

Northern Hemisphere (Fig. 6b), where surface air temperature

anomalies are largest. There are also interesting spatial fea-

tures such as the presence of positive LW anomalies in the

Northern Hemisphere tropics and negative LW anomalies in

the Southern Hemisphere tropics, which indicates a northward

shift of the intertropical convergence zone (ITCZ) in response

to warming of the high latitudes of the Northern Hemisphere

(Chiang and Bitz 2005; Broccoli et al. 2006). The LW compo-

nent alone would amount to a large global radiative feedback

(21.5Wm22 K21 based on decadal anomalies centered at lag

0). However, in the global mean, these LW anomalies are

mostly cancelled by anomalies in SW.

SW anomalies are positive (net energy gain) in most regions

of the globe (Fig. 6d). They are largest in the NorthAtlantic, but

there are also anomalies in theNorth Pacific andArctic. The SW

anomalies are particularly large near the sea ice edge, where

warm SST anomalies lead to sea ice loss and invoke a positive

sea ice–albedo feedback. SW anomalies in the midlatitude

northeast Atlantic are partially associated with a reduction in

low-cloud cover, as evident in the reduction in reflected short-

wave radiation. This supports the idea that cloud feedbacks act

to amplify the AMV (Brown et al. 2016; Yuan et al. 2016;

Bellomo et al. 2016). The positive cloud and sea ice–albedo

feedbacks act to cancel the negativeOLR feedback such that the

net feedback is weakly negative (20.22Wm22K21, based on

decadal anomalies centered at lag 0).

The net loss of energy at TOA comes almost entirely from the

ocean, with little change in the energy stored in the global at-

mosphere (Fig. 6a). The ocean heat loss at the surface is con-

centrated in the subpolar North Atlantic (Fig. 6c), where the

positive SSTs anomalies are largest (Fig. 1). This indicates the

dominant role of ocean heat transport convergence anomalies

[and thus the role of ocean circulations such as the Atlantic

meridional overturning circulation (AMOC)] in sustaining de-

cadal SST anomalies in theNorthAtlantic (Wills et al. 2019a and

references therein).

b. Southern Ocean multidecadal variability

The lead–lag regression of GMTOA on LFC-2 [Southern

Ocean multidecadal variability (SOMV)] shows that the Earth

system is gaining energy in the decades before and losing en-

ergy in the decades after the peak of a warm phase of the

SOMV (Fig. 7a). However, the SW and LW components each

remain the same sign throughout the decades surrounding a

SOMV event. The LW anomaly during an SOMV warm event

is negative (a positive anomaly in outgoing longwave radia-

tion) and is concentrated in the high latitudes of the Southern

Hemisphere (Fig. 7b), where surface air temperature anoma-

lies are largest. The LW anomalies also show a hint of a

southward ITCZ shift (positive anomalies in the Southern

Hemisphere tropics and negative anomalies in the Northern

Hemisphere tropics).

The global LW anomaly would strongly damp GMST

anomalies associated with SOMV (21.6Wm22 K21 based on

decadal anomalies centered at lag 0) if it were not for a com-

pensating positive anomaly in SW. The SW anomaly is con-

centrated in regions where sea ice is lost due to warming of the

Southern Ocean (Fig. 7d), suggesting that it is dominated by

the sea ice–albedo feedback, although we find that cloud ra-

diative changes also play a role (not shown). As was the case

for AMV, the shortwave feedbacks associated with SOMV act

to cancel the negative LW feedback such that the net feedback

is weakly positive (0.16Wm22 K21, based on decadal anoma-

lies centered at lag 0).

The GMTOA changes are balanced by changes in ocean

heat content, with little contribution from atmospheric energy

storage (Fig. 7a). The ocean heat loss and heat gain occur in

different regions (Fig. 7c), with ocean heat loss occurring along

the coast of Antarctica and ocean heat uptake occurring farther

north, in the Indian and Pacific sectors of the Southern Ocean.
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The decadal ocean heat loss anomalies around Antarctica, in re-

gions where SST anomalies are positive (Fig. 1), indicate a role of

ocean heat transport convergence in sustaining these anomalies.

Studies ofmodels with large amplitude SOMV(most of which use

either the NEMO or MOM ocean models) have generally found

this variability to be linked to open-ocean deep convection within

polynyas (Martin et al. 2013; Pedro et al. 2016; Behrens et al. 2016;

Reintges et al. 2017; Zhang et al. 2017; Cabré et al. 2017), which

does not occur in all CMIP6 models. However, the presence of

this variability in all of the CMIP6 models studied (albeit with a

large spread in amplitudes and time scales) suggests that thismode

of variability may be more general.

c. Pacific decadal variability

Pacific decadal variability (PDV), as characterized by LFC-

3, has a more complicated lead–lag relationship with LW and

SW anomalies than the first two LFCs (Fig. 8a). Global-mean

LW anomalies are negative in the decade leading up to the

PDV warm phase (when temperatures are warm in the Gulf of

Alaska and cold in the Kuroshio–Oyashio Extension), before

switching signs 1.5 years after the PDV maximum. This time

evolution is similar but opposite in sign to PDV GMST

anomalies (Fig. 1), such that LW anomalies act to dampGMST

anomalies. LW anomalies in the decade surrounding a PDV

maximum are dominated by positive anomalies (e.g., from

more high cloud cover) in the central and western equatorial

Pacific (1358E–1658W) and negative anomalies (e.g., from less

high cloud cover) in the warm pool, the South Pacific conver-

gence zone, and the northeastern subtropical Pacific (Fig. 8b).

SW anomalies are opposite in sign in each of these regions

(Fig. 8d). The SW anomalies in the North Pacific more closely

resemble anomalies in SST than do LW anomalies. These

North Pacific SW anomalies are consistent with a reduction in

low cloud cover in regions of positive SST anomalies, as has

been observed (Schmeisser et al. 2020). This positive feedback,

particularly in the eastern Pacific, has been suggested to play a

role in the amplitude and persistence of the PDV (Bellomo

et al. 2014).

In the global mean, positive SW anomalies cancel with

negative LW anomalies in the years leading up to a PDVwarm

event (Fig. 8a). The large negative GMTOA anomaly near lag

0 is associated with changes toward more negative values in

both the SW and LW components. This negative GMTOA

anomaly helps to switch the sign of GMST anomalies. SW

anomalies remain negative (a positive feedback on negative

GMST anomalies) during the decade after a PDV event, but

they are smaller in magnitude than the positive LW anoma-

lies. The net effect of the SW and LW terms is near zero

until a year before a PDV event, followed by net energy loss

in the ;3-yr period surrounding a PDV event and then net

energy gain in the following ;8 years of negative GMST

anomalies (Fig. 8a).

As with other modes of low-frequency variability, the

GMTOA changes are balanced by changes in ocean heat

content. Ocean heat loss during the peak of the PDV event

occurs primarily in the Kuroshio and the central and western

equatorial Pacific (1358E–1658W); ocean heat uptake in the

following decade occurs primarily in the Oyashio and the same

region of the central and western equatorial Pacific. Averaged

over 10 years, this amounts to a northward transport of heat

from the Kuroshio into the Oyashio (Fig. 8c). This anomalous

ocean heat transport occurs through an adjustment of the

FIG. 6. Decadal-mean impact of the AMV-like LFC-1 on the global energy budget. (a) Lead–lag regression of net incoming longwave

radiation at TOA (LW), net incoming shortwave radiation at TOA (SW), net incoming radiation at TOA, and net ocean heat uptake

(OHU) on LFC-1. Positive TOA flux anomalies correspond to a net energy input to the Earth system. Lag times indicate anomalies that

lag LFC-1. Also shown are maps of 10-yr running-mean anomalies in (b) LW, (c) 2OHU, and (d) SW associated with a one-standard-

deviation anomaly in LFC-1. The gray shading in (a) shows the averaging period used in the other subpanels. All calculations are averaged

over 35 CMIP6 models.
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ocean gyre circulation to changes in wind forcing (Wills et al.

2019b and references therein).

d. El Niño–Southern Oscillation

The global energy budget changes associated with Niño-3.4
are opposite in sign between lead times and lag times (Fig. 9a)

and largely cancel out in a decadal average centered about lag 0

(Fig. 12a). We therefore focus on global energy budget anomalies

separately in the year preceding and the year following an

ENSO event (i.e., the build up and decay phase of an ENSO

event). Note that our regression approach weights El Niño and

La Niña events equally. The lead–lag structure of TOA is

similar between El Niño and La Niña events (inset in Fig. 9a),

but with the build up phase being weaker and slower and the

decay phase being stronger and faster for El Niño events

compared to La Niña events.

The lead–lag structure of GMTOA (Fig. 9a) is the net result

of a LW component, which evolves in tandem to and acts to

damp GMST anomalies (cf. Fig. 1), and a SW component,

which evolves in quadrature with GMST anomalies (Lutsko

and Takahashi 2018). For the months around a peak ENSO

event, LW and SW anomalies largely cancel, leading to small

anomalies in GMTOA. At lead or lag times larger than a few

months, LW and SW anomalies reinforce each other, leading

to large anomalies in GMTOA.

At both lead and lag times, LW and SW anomalies are

largest in the central and western equatorial Pacific (Figs. 9d,f),

where they show the eastward shift of deep convection

FIG. 7. Decadal-mean impact of LFC-2 (Southern Ocean multidecadal variability) on the global energy budget. Panels are as

described in Fig. 6.

FIG. 8. Decadal-mean impact of the PDV-like LFC-3 on the global energy budget. Panels are as described in Fig. 6.
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during El Niño events (Rasmusson and Carpenter 1982;

Deser and Wallace 1990). These anomalies largely cancel in

the net TOA radiation (Fig. 9b). At lead times, net TOA

anomalies are largest in the eastern Pacific (Fig. 9b), where the

combinedLWand SW feedbacks provide a positive feedback on

ENSO growth (Bellomo et al. 2014; Rädel et al. 2016; Lutsko

2018; Middlemas et al. 2019). At lag times, net TOA anomalies

are largest in the subtropical Pacific and the warm pool (Fig. 9b),

where negative LW anomalies (positive OLR anomalies) domi-

nate over positive SW anomalies, resulting in a net loss of energy

in regions of weakly positive surface air temperature anomalies

(Fig. 9c). These differences in radiative anomalies between

FIG. 9. Impact of ENSO on the global energy budget. (a) Lead–lag regression of net incoming longwave radiation at TOA (LW), net

incoming shortwave radiation at TOA (SW), net incoming radiation at TOA, and net ocean heat uptake (OHU) on Niño-3.4. Positive TOA

flux anomalies correspond to a net energy input to theEarth system. Lag times indicate anomalies that lagNiño-3.4. The inset shows the lead–
lag regression of TOA separately for El Niño (EN) andLaNiña (LN), normalized such that their lead–lag regressions have the same variance

across all lead and lag times. Also shown are maps of anomalies in (b) net incoming radiation at TOA, (c) surface air temperature (TAS),

(d) LW, (e) 2OHU, and (e) SW associated with a one-standard-deviation anomaly in Niño-3.4. Top subpanels show anomalies in the year

before the Niño-3.4 maximum; bottom subpanels show anomalies in the year after (i.e., 1-yr running mean anomalies at a lead time of

6 months and a lag time of 6 months, respectively). The gray shading in (a) shows the averaging periods used in the other subpanels.

All calculations are averaged over 35 CMIP6 models.
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lead times and lag times result in a net energy gain leading up to

an El Niño event and a net energy loss afterward. The large

but cancelling anomalies in lead and lag times can result in

biases in estimates of climate sensitivity from short records if

the averaging period does not include the full period of energy

gain and loss, as we will discuss in section 5.

Temperature and radiation anomalies in the subtropics are

larger in the year after a maximum in Niño-3.4 than in the year

before. Anomalies in these fields therefore cover a broader

range of latitudes at lag times, when the temperature pattern is

similar to the PDV (Zhang et al. 1997). Note, however, that the

decadal variability captured by the PDV-like LFC-3 is much

more focused in the midlatitudes (Fig. 1) and occurs due to

midlatitude processes that are only loosely connected to ENSO

(Wills et al. 2019b).

The evolution of global-mean ocean heat uptake (OHU)

during an ENSO event looks similar to that of GMTOA

(Fig. 9a), but with a slight lead such that the ocean heat content

is maximum at a lead time of;3months (whereOHU5 0) and

the atmospheric heat content is maximum at a lag time of

;4 months (where TOA5OHU). The total energy content of

the Earth system peaks just before lag 0 (where TOA 5 0),

similar to what is found in observational estimates of ocean

heat content (Johnson and Birnbaum 2017). Ocean heat up-

take at lead times primarily occurs in the Atlantic and Indian

Oceans, off the equator in the tropical eastern Pacific, and

along the coast of East Asia (Fig. 9e). Along the equator, the

ocean is already losing energy in the year before an El Niño
event (Fig. 9e), but this energy loss covers amuch larger area in

the year following an El Niño event. This heat loss from the

ocean surface acts to damp the SST anomalies set up by

anomalies in ocean heat transport and upwelling (Zebiak and

Cane 1987; Philander 1989; Deser and Wallace 1990). Locally,

the net surface heat flux anomalies are larger in magnitude

than the anomalies in net TOA radiation (Fig. 9e; cf. Fig. 9b,

note the different color scales). They are a dominant factor in

driving anomalies in tropical overturning circulations such as

theWalker circulation, partly through their influence on large-

scale SST and sea level pressure gradients (Chiang et al. 2001;

Adames and Wallace 2017) and partly through their direct

influence on the strength of ascent in deep convective regions

(Wills et al. 2017).

5. Impact of internal variability on climate sensitivity
estimates

Armed with an improved understanding of how modes

of internal variability give rise to anomalies in GMST and

global radiative feedbacks, we now turn to the question

of how these modes of variability can impact estimates of

climate sensitivity based on historical GMST and TOA-

radiative-imbalance anomalies. To consider the impact of

internal variability on observational estimates of climate

sensitivity, we split Tobs and Nobs in Eq. (3) into forced and

internal components:

EffCS5
F

2xCO2
(T

forced
1T

internal
)

F
obs

2N
forced

2N
internal

. (6)

We take representative externally forced anomalies in GMST

(T forced) and GMTOA (Nforced) and superimpose internal var-

iability in GMST (T internal) and GMTOA (Ninternal), as diag-

nosed from the CMIP6 piControl simulations.

We first compute the total spread in EffCS due to all types of

internal variability by taking the standard deviation of the 10-

and 30-yr running-mean EffCS, based on Eq. (6) (Figs. 10a and

10b, respectively). The spread in EffCS depends on the amount

of externally forced historical warming (T forced) and the radi-

ative response to that historical warming, quantified here with

an effective climate sensitivity:

EffCS
forced

5
F

2xCO2
T

forced

F
obs

2N
forced

. (7)

The spread in EffCS is largest for a small historical warming

or a weak global radiative response (higher EffCSforced). For

an externally forced historical warming T forced 5 18C and ra-

diative response Fobs 2Nforced 5 1:14Wm22 (corresponding to

EffCSforced 5 3.58C), the two-standard-deviation spread in

EffCS due to internal variability would be 60.658C based on

10-yr averages or 60.368C based on 30-yr averages (circles in

Figs. 10a and 10b, respectively). At decadal and longer time

scales, internal variability primarily influences EffCS through

FIG. 10. Two-standard-deviation (’95%) spread in effective cli-

mate sensitivity (EffCS) from superimposing internal variability

from CMIP6 piControl simulations on an assumed externally forced

historical warming (T forced; x axis) and a radiative response corre-

sponding to a forced effective climate sensitivity (EffCSforced; y axis),

where EffCS is calculated from (a) 10-yr running averages and

(b) 30-yr running averages of Eq. (6). Values are the median across

35 CMIP6 models. Black circles show the values of T forced and

EffCSforced used in Figs. 11 and 12. (c) Multimodel mean squared

correlation between anomalies in EffCS and its components due to

internal variability in GMST and GMTOA, as a function of the

averaging period used to compute EffCS. See the appendix for more

details of this decomposition.
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its impact on GMST rather than through its influence on

GMTOA (Fig. 10c; see the appendix for a full decomposition

of the contributions to spread in EffCS). This reflects the red

power spectrum of GMST, which shows large variability on

decadal and longer time scales (Fig. 4a), whereas GMTOA

has a relatively white power spectrum, with peak variance in

the ENSO band.

The diagnosed spread in EffCS based on internal variability

in CMIP6 models (60.658C based on 10-yr averages) is com-

parable to the range of EffCS across historical simulations

from the 100-member MPI-ESM1.1 large ensemble (60.958C
based on 10-yr averages; Dessler et al. 2018). This spread in

EffCS due to internal variability is smaller than the observa-

tional uncertainty range of 1.28–3.98C given in Otto et al.

(2013), which includes observational uncertainty in GMST,

radiative forcing, and ocean heat content anomalies relative to

the preindustrial state. However, internal variability could lead

to a systematic bias if the chosen period is in a phase of internal

variability that leads to a particular bias in EffCS [an effect that

is neglected in Otto et al. (2013)]. For example, Andrews et al.

(2018) show that differences between the observed pattern of

warming and the projected pattern of long-term warming lead

to a bias toward lower EffCS in the historical period. This ob-

served warming pattern anomaly is generally found to be con-

sistent with model estimates of internal variability (Watanabe

et al. 2021; Olonscheck et al. 2020), at least on decadal time

scales. Furthermore, internal variability is the main reason why

EffCS can be sensitive to the chosen averaging period, as dis-

cussed in Forster (2016) and Loeb et al. (2016). We therefore

aim to understand how different modes of internal variability

contribute to anomalies in EffCS.

a. Impact of low-frequency internal variability on EffCS

To show the impact of variability in LFCs 1–3 on EffCS, we

compute the decadal-mean anomalies in GMST and GMTOA

associated with a two-standard-deviation anomaly in each LFC

(Figs. 11a–c). Based onEq. (6), the corresponding anomalies in

EffCS are diagonal lines in this space of GMST and GMTOA.

LFC-1 and LFC-2, which both have large impacts on GMST at

lag 0 (Figs. 11a,b), have correspondingly large impacts on

EffCS of 0.218 and 0.208C, respectively (in the multimodel

mean). The more positive TOA anomalies associated with

LFC-2 afford it a comparable impact on EffCS despite its

smaller impact on GMST compared to LFC-1 (e.g., compare

MPI-ESM1-2-HR between Figs. 11a and 11b). Anomalies are

small enough that the impact of negative anomalies in these

modes is approximately the negative of these values, such that

the total spreads in EffCS due to LFC-1 and LFC-2 are each

60.28C (cf. total spread of 60.658C). The models with the

largest amplitude variability in these modes (EC-Earth3 for

LFC-1 and BCC-CSM2-MR for LFC-2) can have impacts on

EffCS up to 5 times as large.

The lag-0 impact of the PDO-like LFC-3 on GMST is small

and varies in sign across models (Fig. 11c), therefore contem-

poraneous (lag 0) LFC-3 anomalies have a minimal impact on

EffCS in most models. However, this does not capture the ef-

fect of GMST trends associated with LFC-3 on EffCS. We

therefore analyze the change in GMST and GMTOA between

the five years before and the five years after a one-standard-

deviation anomaly in each LFC (right-hand side of Fig. 11).

This captures decadal trends in GMST, GMTOA, and EffCS

associated with each LFC. Qualitatively, this can also be

thought of as the decadal global climate anomalies that would

result from a positive LFC anomaly at the beginning of a de-

cade and a negative anomaly at the end of a decade (i.e., the

decadal anomalies associated with a two-standard-deviation

trend in the LFC). All models show a reduction in the rate of

global warming during positive PDV events (based on LFC-

3; Fig. 11f), as has been suggested to explain the so-called global

warming hiatus (Meehl et al. 2011; Trenberth and Fasullo 2013;

Kosaka and Xie 2013; England et al. 2014; Liu et al. 2016).

Equivalently, a negative trend in LFC-3 is associated with a neg-

ative GMST anomaly. Many models show a small anomalous

energy input into theEarth system in response to this cooling, such

that LFC-3 does not have a big influence onEffCS in thesemodels

(Fig. 11f; e.g., BCC-ESM1). In a few models, including CESM2

and CESM2-WACCM, the radiative response is the opposite sign

(a positive feedback). In this case, cooling trends associated with

LFC-3 can induce moderate negative anomalies in EffCS.

LFC-1 and LFC-2 can similarly induce a negative EffCS

anomaly in their decay phase in models where the GMTOA

anomalies are highly asymmetric about lag 0 (Figs. 11d,e), such

as NorESM2-MM. In other words, the positive phases of LFCs

1–3 are associated with trends toward larger negative TOA

radiation anomalies and thus trends toward more-negative

EffCS anomalies, particularly in the CMIP6 models that have

the largest GMTOA change (toward more radiation out of the

Earth system) between the five years before and the five years

after a positive LFC anomaly. However, the decadal trends in

GMST and EffCS associated with LFC-1 and LFC-2 are gen-

erally smaller than the contemporaneous anomalies in GMST

and EffCS (cf. Figs. 11a,b).

b. Impact of ENSO on EffCS

To investigate the influence of ENSO on decadal variability

in EffCS, we examine a similar diagram based on the Niño-3.4
index (Fig. 12). The lag-0 influence of Niño-3.4 on decadal-mean

GMST and GMTOA is small, leading to a small influence on

EffCS (Fig. 12a). This is partly the result of cancellation be-

tween anomalies associated with El Niño and La Niña, and the

influence of Niño-3.4 on 2-yr-mean GMST and GMTOA is

more than 5 times larger (than on decadal-mean GMST and

GMTOA) in the multimodel mean (Fig. 12b; cf. Fig. 12a; note

different x- and y-axis scales).

Because the lead–lag relationship between Niño-3.4 and

GMTOA is asymmetric about lag 0 (Fig. 5), the impact of

Niño-3.4 on decadal trends in GMTOA (i.e., the change be-

tween the five years before and the five years after) is much

larger than its impact on the contemporaneous decade (Fig. 12c;

cf. Fig. 12a). The trend inGMTOA causes the EffCS to bemuch

lower in the period following an El Niño or preceding a La Niña
(when the Earth system is losing energy) than in the period

preceding an El Niño or following a La Niña (when the Earth

system is gaining energy). In this way, the timing of ENSO

events within a decadal period can lead to EffCS anomalies of

60.148C (in the multimodel mean). The end members of this
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95% spread are decadal periods that begin at the peak of a one-

standard-deviation El Niño event and end at the peak of a one-

standard-deviation La Niña event, or vice versa. Note, however,

that some of the impact of ENSO on decadal anomalies in

GMST, GMTOA, and EffCS may come from the tendency for

positive PDV anomalies to follow El Niño events (Newman

et al. 2016; Wills et al. 2019b).

c. Interpreting EffCS in historical periods

Applying these insights on the sources of internal variability

in EffCS to estimate the actual EffCS bias in a particular

historical period would require further methodological devel-

opments (e.g., using detection and attributionmethods to track

changes in modes of variability over time) that are beyond the

scope of this paper. Furthermore, the interpretation of the

recent historical record through the lens of CMIP model var-

iability must be made with caution, as the variability sampled

by the CMIP ensemble may not adequately capture historical

variations in SSTs (Cane et al. 1997; Laepple and Huybers

2014; Coats and Karnauskas 2017), the Walker circulation and

trade winds (L’Heureux et al. 2013; Kociuba and Power 2015),

or radiative feedbacks (Zhou et al. 2016; Andrews et al. 2018).

FIG. 11. Scatterplots of the lag-0 (contemporaneous) impact of a two-standard-deviation anomaly in (a) LFC-1, (b) LFC-2, and (c) LFC-3

on 10-yr running-mean GMST (x axis) and 10-yr running-mean GMTOA (y axis) for all 35 of the CMIP6 piControl simulations. (d)–(f) The

change in GMST (x-axis) and GMTOA (y axis) between the 5 years before and 5 years after a one-standard-deviation anomaly in LFC-1,

LFC-2, and LFC-3, respectively. Diagonal lines show the corresponding anomaly in effective climate sensitivity (EffCS) if these GMST and

GMTOA anomalies are superimposed on a forced change of 18C and 1.14Wm22 (corresponding to an EffCSforced of 3.58C).
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Nevertheless, we can provide some qualitative arguments for

how internal variability may have influenced recent climate

sensitivity estimates from observations.

During the time periods used by Otto et al. (2013) (2000–09)

and Lewis and Curry (2015) (1995–2011), the high latitudes of

the North Atlantic and Arctic had warmed more than pro-

jected in uninitialized climate model simulations (Yeager et al.

2015), while the Southern Ocean had warmed less than pro-

jected (Armour et al. 2016). These anomalies correspond to a

positive anomaly in LFC-1 and a negative anomaly in LFC-2,

which would lead to large positive and negative EffCS anoma-

lies, respectively. However, the extent to which these anomalies

resulted purely from internal variability (versus differences in

the forced response between observations and models) is un-

certain. If these anomalies are due to internal variability, the

EffCS anomalies would be interpreted as differences between

EffCS and EffCSforced; if they are due to an incorrect forced

response in models, the EffCS anomalies would be interpreted

as differences in EffCSforced between the real world and models.

This highlights the need for better methods to separate forced

and unforced components of climate change in observations.

There were also large changes in Niño-3.4 during these two

time periods; the 2000–09 period started from a moderate La

Niña and ended with a moderate El Niño, whereas the 1995–

2011 period started from a weak El Niño and ended with a

weak La Niña. Our analysis of the global energy budget im-

pacts of Niño-3.4 suggests that these ENSO anomalies at the

beginning and end of these time periods could lead to opposite

impacts on EffCS, with a positive EffCS bias based on 2000–09

and a negative bias based on 1995–2011. The general agree-

ment between these two estimates, however, suggests that this

was not the case. The full time evolution of Niño-3.4 during

these time periods (rather than just the anomalies at the end

points) could be important in determining the anomalies in the

global energy budget and the corresponding anomalies in

EffCS. Together, the large global radiative impacts of ENSO

and the difficulties in capturing these impacts with a simple

linear regression approach suggest that great caution is

needed in estimating climate sensitivity from short obser-

vational records.

6. Summary and conclusions

In this paper, we showed that CMIP6 models have large-

amplitude interdecadal GMST variability resulting from vari-

ability in the high-latitude oceans. Interdecadal variability in

FIG. 12. (a) Scatterplots of the lag-0 (contemporaneous) impact of a two-standard-deviation anomaly in Niño-3.4 on 10-yr running-mean

GMST (x axis) and 10-yr running-mean GMTOA (y axis) for all 35 of the CMIP6 piControl simulations. (b) As in (a), but for 2-yr running

means. (c) The change inGMST (x axis) andGMTOA(y axis) between the 5 years before and5 years after a two-standard-deviation anomaly

inNiño-3.4. (d)As in (c), but for 1-yr averages. Diagonal lines show the corresponding anomaly in effective climate sensitivity (EffCS) if these

GMST and GMTOA anomalies are superimposed on a forced change of 18C and 1.14Wm22 (corresponding to an EffCSforced of 3.58C).
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the Northern Hemisphere (i.e., LFC-1) is closely tied to the

AMV,with large SST anomalies in theNorthAtlantic subpolar

gyre associated with coupled atmosphere–ocean variability

(Wills et al. 2019a and references therein). Interdecadal vari-

ability in the Southern Hemisphere is dominated by zonally

symmetric SST changes in the SouthernOcean (i.e., LFC-2). In

models where LFC-2 variability is strongest, it is linked to

variability in open-ocean deep convection (Martin et al. 2013;

Pedro et al. 2016; Behrens et al. 2016; Reintges et al. 2017;

Zhang et al. 2017; Cabré et al. 2017). The large area of SST

anomalies associated with LFC-1 and LFC-2 as well as their

impacts on sea ice extent and Arctic/Antarctic surface air

temperatures afford them a large impact on GMST. The long

time scale of these modes of variability means that the asso-

ciated GMST anomalies can persist for multiple decades

(Fig. 1) or even up to a century in some models (Parsons

et al. 2020).

Despite their large impact onGMST, neither of these modes

has a large impact on the global energy balance at TOA.

In both cases, large, negative longwave radiative feedbacks,

which would act to damp GMST anomalies, are cancelled by

positive shortwave radiative feedbacks, such as the sea ice–

albedo feedback and low-cloud feedback. These cancelling

feedbacks result in these modes having weak global radiative

feedbacks of approximately 20.5Wm22 K21. If such low

global radiative feedbacks occurred in response to a doubling

of CO2 (something that should only be considered a thought

experiment), then this would correspond to an ECS of ;88C.
Cancellation between longwave and shortwave feedbacks

also occurs in PDV-like LFC-3 variability, except in the year

before and the year after its peak. As a consequence, LFC-3

also has a weak global radiative feedback, though not as weak

as LFC-1 and LFC-2. In contrast, longwave and shortwave

feedbacks associated with ENSO reinforce each other at most

lead and lag times, leading to large impacts on the TOA energy

balance and a correspondingly large global radiative feedback

of approximately23Wm22 K21. ENSO is therefore the mode

of variability with the largest impact on GMTOA out to de-

cadal time scales, despite its predominantly interannual time

scale. The strong global radiative feedbacks associated with

ENSO variability act to damp the associated GMST anomalies

and prevent them from persisting for more than a year or two.

A further takeaway of our analysis is that there is a diverse

array of possible lead–lag relationships between modes of

variability and global climate impacts. While GMST anomalies

develop in proportion to LFC-1 and LFC-2 anomalies and

(with a fewmonths lag) to ENSO anomalies, this is not the case

for the PDV-like LFC-3, which is associated instead with an

anomaly in the rate of GMST change. GMTOA anomalies

exhibit an even wider range of lead–lag relationships with the

modes of variability. In the case of LFC-1 and LFC-2, weakly

negative GMTOA anomalies develop after their warm phases.

However, LFC-2 also shows positive GMTOA anomalies in

the decades leading up to its warm phase, evidence that positive

radiative feedbacks (e.g., the sea ice–albedo feedback) act to

amplify its growth. LFC-3 and ENSO radiative anomalies have a

similar temporal evolution to their respective GMST anomalies,

but with opposite signs and slight lags. In both cases, GMTOA

anomalies near the peak of the LFC-3 or ENSO event act to

change the sign of GMST anomalies. In the case of ENSO, the

relationship betweenGMTOAandGMSTcan bemodeledwith a

stochastically forced linear oscillator (Proistosescu et al. 2018).

Internal variability in GMST and GMTOA can lead to

biases in estimates of the global climate feedback from short

time periods, as have been used to estimate climate sensitivity

from observations (Otto et al. 2013; Lewis and Curry 2015;

Forster 2016; Knutti et al. 2017; Sherwood et al. 2020). We

found that decadal internal variability of themagnitude found in

CMIP6 piControl simulations can lead to biases of 60.658C
(60.368C) in the effective climate sensitivity (EffCS) inferred

from 10-yr (30-yr) average anomalies, when superimposed on

externally forced GMST and global energy budget changes of

T forced 5 18C and F2Nforced 5 1:14Wm22. The spread in EffCS

due to internal variability would be larger for smaller forced

temperature changes or for smaller global radiative feedbacks

(larger effective climate sensitivities). The biggest contributors

to the spread in EffCS are the slowmodes of global temperature

variability in the high latitudes (LFC-1 and LFC-2), which can

each lead to multimodel median biases in EffCS (based on 10-yr

average anomalies) of approximately 60.28C and biases up to

5 times as large in some models (Figs. 11a,b). The PDV-like

LFC-3 can lead to anomalies in the rate of GMST change, but

does not lead to large anomalies in EffCS in most models.

The complex phase relationships between modes of variabil-

ity, GMST, and GMTOA mean that a detailed analysis of the

contribution of modes of internal variability to EffCS biases in

an individual decade requires a careful treatment of the phase

evolution of modes of variability. In particular, we find that it is

important to capture the full evolution of ENSO events within

an averaging period, because EffCS will otherwise be strongly

biased due to large differences in the global energy budget be-

tween the El Niño growth and decay phases. These time-

evolving global energy budget anomalies can lead to EffCS

biases of approximately60.148C if the decadal averaging period

used starts from a one-standard-deviation La Niña event and

ends with a one-standard-deviation El Niño event, or vice versa.

Some important caveats of our study are that our analysis is

entirely based upon CMIP6 models, which struggle to reproduce

observed multidecadal SST changes (Laepple and Huybers 2014;

Watanabe et al. 2021), that we only considered a subset of the di-

verse modes of climate variability, that we did not consider the

potential nonlinear superposition of radiative impacts from differ-

ent modes of variability, and that we made no distinction between

anomalies in different seasons. Further work is needed to validate

some of our conclusions in observations. In particular, longer rec-

ords and/or better methods to remove the forced climate response

are needed to determine the magnitude of decadal internal

variability in observations, especially in the North Atlantic and

Southern Ocean. The radiative impacts of these slow modes of

high-latitude variability are hard to verify in observations until we

have longer records of TOAradiation.Amore thorough treatment

of the seasonality of global energy budget anomalies may also give

further insight into the mechanisms of variability in global climate.

Overall, we have shown that modes of interdecadal SST vari-

ability in CMIP6 models are concentrated in the high latitudes,

where they have a large impact on GMST but a minimal impact
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on GMTOA. The largest and most persistent GMST anomalies

result from variability inNorthAtlantic SSTs linked toAMOCor

variability in SouthernOcean SSTs linked to poleward ocean heat

transport. The minimal impact of these slow modes of global

temperature variability on GMTOA results from the cancelation

between positive shortwave cloud and sea ice–albedo feedbacks

and the negative feedback of outgoing longwave radiation. This

suggests that externally forcedwarming in thehigh latitudes is also

likely to be weakly damped by radiation, such that a greater de-

gree of polar amplification could be associated with a higher cli-

mate sensitivity. Tropical SST variability, such as that associated

with ENSO, is generally associated with large impacts on

GMTOA. However, subtle differences in the SST pattern be-

tween the build up and decay phases of El Niño can give rise to

opposite-signed anomalies in GMTOA, suggesting that the cli-

mate sensitivity in response to external forcing may depend sen-

sitively on the details of the tropical SST pattern [consistent with

the work of Dong et al. (2019)].

We hypothesize that it is not a coincidence that the slowest

modes of global temperature variability are in regions of weak

radiative feedbacks. Rather, we suggest that the lack of strong

radiative damping in the polar regions, where anomalies remain

trapped beneath a strong inversion, as well as the relative inef-

ficiency of atmospheric heat transport away from these regions

(Stuecker et al. 2018;Armour et al. 2019), may be the reason that

SST anomalies in these regions can persist for several decades.

In contrast, SST anomalies in regions of tropical deep convec-

tion will quickly be communicated to the free troposphere,

where they can influence the global lapse rate and cloud fraction

and lead to strong radiative damping (Zhou et al. 2017; Ceppi

and Gregory 2017; Dong et al. 2019). As a consequence, SST

anomalies in tropical deep convective regions result in a large

loss of energy at the global scale. In the absence of a large source

of energy (e.g., strong energy exchange with the deep ocean),

these tropical SST anomalies would not be able to persist on

decadal time scales. We therefore suggest that tropical SST

anomalies will generally be associated with large changes in

Earth’s energy budget, whether forced or unforced.
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APPENDIX

Contributions to EffCS Spread

Here, we provide expressions for the contributions of internal

variability in GMST (T internal) and GMTOA (Ninternal) to anom-

alies in EffCS. We start from the full expression for EffCS:

EffCS52
F

2xCO2
(T

forced
1T

internal
)

(R
forced

1N
internal

)
. (A1)

For conciseness, we have introduced Rforced 5Nforced 2Fobs.

The effective climate sensitivity associated with the forced

response is determined by setting T internal and Ninternal to zero:

EffCS
forced

[2
F

2xCO2
T

forced

R
forced

. (A2)

The difference between EffCS and EffCSforced is split into

three components, due to T internal,Ninternal, or a combination of

the two:

FIG. A1. Contributions to the two-standard-deviation (’95%)

spread in effective climate sensitivity (EffCS), calculated from 10-

yr running averages, from internal variability in (a) GMST,

(b) GMTOA, (c) GMTOAand nonlinear terms that depend on the

covariance of GMST and GMTOA, and (d) the nonlinear terms

that dependon the covarianceofGMSTandGMTOA; i.e., (c)5 (b)1
(d). This calculation is based on the superposition of internal variability

from CMIP6 piControl simulations, an assumed externally forced

historical warming (T forced; x axis), and an assumed radiative response

corresponding a forced effective climate sensitivity (EffCSforced; y axis).

Values are the median across 35 CMIP6 models.
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For conciseness, we have omitted several steps of straightforward

algebra. The totalEffCS spread shown inFig. 10a is split into these

three terms in Figs. A1a, A1b, and A1d, respectively. Figure A1c

shows the combination of EffCSTOA and EffCSnonlinear (i.e., all

terms that depend on Ninternal). The contribution to the spread in

EffCS fromT internal (Fig. A1a) is larger than the contribution from

Ninternal (including the nonlinear term; Fig A1c) for all values of

the forced response; it is much larger in cases where historical

global warming is large or EffCSforced is small.

REFERENCES

Adames, Á. F., and J. M. Wallace, 2017: On the tropical atmo-

spheric signature of El Niño. J. Atmos. Sci., 74, 1923–1939,

https://doi.org/10.1175/JAS-D-16-0309.1.

Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of

SST anomalies in the North Pacific Ocean. J. Climate, 12, 2419–2433,

https://doi.org/10.1175/1520-0442(1999)012,2419:TROSAI.2.0.CO;2.

——, I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J.D. Scott,

2002: The atmospheric bridge: The influence of ENSO tele-

connections on air–sea interaction over the global oceans.

J. Climate, 15, 2205–2231, https://doi.org/10.1175/1520-0442(2002)

015,2205:TABTIO.2.0.CO;2.

Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The depen-

dence of radiative forcing and feedback on evolving patterns

of surface temperature change in climate models. J. Climate,

28, 1630–1648, https://doi.org/10.1175/JCLI-D-14-00545.1.

——, and Coauthors, 2018: Accounting for changing temperature pat-

terns increases historical estimates of climate sensitivity.Geophys.

Res. Lett., 45, 8490–8499, https://doi.org/10.1029/2018GL078887.

Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying

climate sensitivity from regional feedbacks. J. Climate, 26,

4518–4534, https://doi.org/10.1175/JCLI-D-12-00544.1.

——, J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom,

2016: Southern Ocean warming delayed by circumpolar up-

welling and equatorward transport. Nat. Geosci., 9, 549–554,

https://doi.org/10.1038/ngeo2731.

——, N. Siler, A. Donohoe, and G. H. Roe, 2019: Meridional at-

mospheric heat transport constrained by energetics and me-

diated by large-scale diffusion. J. Climate, 32, 3655–3680,

https://doi.org/10.1175/JCLI-D-18-0563.1.

Behrens, E., G. Rickard, O. Morgenstern, T. Martin, A. Osprey, and

M. Joshi, 2016: SouthernOceandeep convection in global climate

models: A driver for variability of subpolar gyres and Drake

Passage transport ondecadal timescales. J.Geophys.Res.Oceans,

121, 3905–3925, https://doi.org/10.1002/2015JC011286.
Bellomo, K., A. Clement, T. Mauritsen, G. Rädel, and B. Stevens,

2014: Simulating the role of subtropical stratocumulus clouds

in driving Pacific climate variability. J. Climate, 27, 5119–5131,

https://doi.org/10.1175/JCLI-D-13-00548.1.

——, ——, L. N. Murphy, L. M. Polvani, and M. A. Cane, 2016:

New observational evidence for a positive cloud feedback that

amplifies the Atlantic multidecadal oscillation. Geophys. Res.

Lett., 43, 9852–9859, https://doi.org/10.1002/2016GL069961.

Bloch-Johnson, J., M. Rugenstein, and D. S. Abbot, 2020: Spatial

radiative feedbacks from internal variability using multiple

regression. J. Climate, 33, 4121–4140, https://doi.org/10.1175/

JCLI-D-19-0396.1.

Bond, N., J. Overland, M. Spillane, and P. Stabeno, 2003: Recent

shifts in the state of the North Pacific.Geophys. Res. Lett., 30,

2183, https://doi.org/10.1029/2003GL018597.

Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of

the ITCZ to Northern Hemisphere cooling. Geophys. Res.

Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

Brown, P. T., W. Li, L. Li, and Y. Ming, 2014: Top-of-atmosphere

radiative contribution to unforced decadal global temperature

variability in climate models. Geophys. Res. Lett., 41, 5175–

5183, https://doi.org/10.1002/2014GL060625.

——, ——, and S.-P. Xie, 2015: Regions of significant influence on

unforced global mean surface air temperature variability in

climate models. J. Geophys. Res., 120, 480–494, https://doi.org/

10.1002/2014JD022576.

——,M. S. Lozier, R. Zhang, andW. Li, 2016: The necessity of cloud

feedback for a basin-scale Atlantic Multidecadal Oscillation.

Geophys. Res. Lett., 43, 3955–3963, https://doi.org/10.1002/

2016GL068303.

Cabré, A., I. Marinov, and A. Gnanadesikan, 2017: Global atmo-

spheric teleconnections and multidecadal climate oscillations

driven by Southern Ocean convection. J. Climate, 30, 8107–

8126, https://doi.org/10.1175/JCLI-D-16-0741.1.

Cane,M.A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov,

R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-

century sea surface temperature trends. Science, 275, 957–960,

https://doi.org/10.1126/science.275.5302.957.

Capotondi, A., and Coauthors, 2015: Understanding ENSO di-

versity. Bull. Amer. Meteor. Soc., 96, 921–938, https://doi.org/

10.1175/BAMS-D-13-00117.1.

Ceppi, P., and J. M. Gregory, 2017: Relationship of tropospheric

stability to climate sensitivity and Earth’s observed radiation

budget. Proc. Natl. Acad. Sci. USA, 114, 13 126–13 131, https://

doi.org/10.1073/pnas.1714308114.

Charney, J. G., and Coauthors, 1979: Carbon Dioxide and Climate:

A Scientific Assessment. National Academy of Sciences, 22 pp.

Chen, X., and K.-K. Tung, 2014: Varying planetary heat sink led to

global-warming slowdown and acceleration. Science, 345, 897–

903, https://doi.org/10.1126/science.1254937.

——, and J. M. Wallace, 2016: Orthogonal PDO and ENSO

indices. J. Climate, 29, 3883–3892, https://doi.org/10.1175/

JCLI-D-15-0684.1.

——, and K.-K. Tung, 2017: Global-mean surface temperature var-

iability: Space–time perspective from rotated EOFs. Climate

Dyn., 51, 1719–1732, https://doi.org/10.1007/s00382-017-3979-0.

Chiang, J. C., and D. J. Vimont, 2004: Analogous Pacific and

Atlantic meridional modes of tropical atmosphere–ocean

variability. J. Climate, 17, 4143–4158, https://doi.org/10.1175/

JCLI4953.1.

1 NOVEMBER 2021 W I L L S ET AL . 8735

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 10/07/21 06:11 PM UTC

https://doi.org/10.1175/JAS-D-16-0309.1
https://doi.org/10.1175/1520-0442(1999)012<2419:TROSAI>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
https://doi.org/10.1175/JCLI-D-14-00545.1
https://doi.org/10.1029/2018GL078887
https://doi.org/10.1175/JCLI-D-12-00544.1
https://doi.org/10.1038/ngeo2731
https://doi.org/10.1175/JCLI-D-18-0563.1
https://doi.org/10.1002/2015JC011286
https://doi.org/10.1175/JCLI-D-13-00548.1
https://doi.org/10.1002/2016GL069961
https://doi.org/10.1175/JCLI-D-19-0396.1
https://doi.org/10.1175/JCLI-D-19-0396.1
https://doi.org/10.1029/2003GL018597
https://doi.org/10.1029/2005GL024546
https://doi.org/10.1002/2014GL060625
https://doi.org/10.1002/2014JD022576
https://doi.org/10.1002/2014JD022576
https://doi.org/10.1002/2016GL068303
https://doi.org/10.1002/2016GL068303
https://doi.org/10.1175/JCLI-D-16-0741.1
https://doi.org/10.1126/science.275.5302.957
https://doi.org/10.1175/BAMS-D-13-00117.1
https://doi.org/10.1175/BAMS-D-13-00117.1
https://doi.org/10.1073/pnas.1714308114
https://doi.org/10.1073/pnas.1714308114
https://doi.org/10.1126/science.1254937
https://doi.org/10.1175/JCLI-D-15-0684.1
https://doi.org/10.1175/JCLI-D-15-0684.1
https://doi.org/10.1007/s00382-017-3979-0
https://doi.org/10.1175/JCLI4953.1
https://doi.org/10.1175/JCLI4953.1


——, and C. M. Bitz, 2005: Influence of high latitude ice cover on

themarine Intertropical Convergence Zone.Climate Dyn., 25,

477–496, https://doi.org/10.1007/s00382-005-0040-5.

——, S. E. Zebiak, andM.A.Cane, 2001: Relative roles of elevated

heating and surface temperature gradients in driving anoma-

lous surface winds over tropical oceans. J. Atmos. Sci., 58,

1371–1394, https://doi.org/10.1175/1520-0469(2001)058,1371:

RROEHA.2.0.CO;2.

Coats, S., and K. Karnauskas, 2017: Are simulated and observed

twentieth century tropical Pacific sea surface temperature

trends significant relative to internal variability?Geophys. Res.

Lett., 44, 9928–9937, https://doi.org/10.1002/2017GL074622.

DelSole, T., 2001: Optimally persistent patterns in time-varying

fields. J. Atmos. Sci., 58, 1341–1356, https://doi.org/10.1175/

1520-0469(2001)058,1341:OPPITV.2.0.CO;2.

——, M. K. Tippett, and J. Shukla, 2011: A significant component

of unforced multidecadal variability in the recent acceleration

of global warming. J. Climate, 24, 909–926, https://doi.org/

10.1175/2010JCLI3659.1.

Déqué, M., 1988: 10-day predictability of the Northern Hemisphere

winter 500-mb height by the ECMWF operational model.

Tellus, 40A, 26–36, https://doi.org/10.3402/tellusa.v40i1.11780.

Deser, C., 2000: On the teleconnectivity of the ‘‘Arctic

Oscillation.’’ Geophys. Res. Lett., 27, 779–782, https://doi.org/

10.1029/1999GL010945.

——, and J. M. Wallace, 1990: Large-scale atmospheric circulation

features of warm and cold episodes in the tropical Pacific.

J. Climate, 3, 1254–1281, https://doi.org/10.1175/1520-0442(1990)

003,1254:LSACFO.2.0.CO;2.

Dessler, A. E., 2013: Observations of climate feedbacks over 2000–

10 and comparisons to climate models. J. Climate, 26, 333–342,

https://doi.org/10.1175/JCLI-D-11-00640.1.

——, T. Mauritsen, and B. Stevens, 2018: The influence of internal

variability on Earth’s energy balance framework and impli-

cations for estimating climate sensitivity.Atmos. Chem. Phys.,

18, 5147–5155, https://doi.org/10.5194/acp-18-5147-2018.

Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation

links ocean climate and ecosystem change.Geophys. Res. Lett.,

35, L08607, https://doi.org/10.1029/2007GL032838.

Dong, Y., C. Proistosescu, K. C. Armour, and D. S. Battisti, 2019:

Attributing historical and future evolution of radiative feed-

backs to regional warming patterns using a Green’s function

approach: The preeminence of the western Pacific. J. Climate,

32, 5471–5491, https://doi.org/10.1175/JCLI-D-18-0843.1.

England, M. H., and Coauthors, 2014: Recent intensification of

wind-driven circulation in the Pacific and the ongoing warm-

ing hiatus. Nat. Climate Change, 4, 222–227, https://doi.org/

10.1038/nclimate2106.

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J.

Stouffer, and K. E. Taylor, 2016: Overview of the Coupled

Model Intercomparison Project Phase 6 (CMIP6) experi-

mental design and organization.Geosci. Model Dev., 9, 1937–

1958, https://doi.org/10.5194/gmd-9-1937-2016.

Forster, P. M., 2016: Inference of climate sensitivity from analysis

of Earth’s energy budget.Annu. Rev. Earth Planet. Sci., 44, 85–

106, https://doi.org/10.1146/annurev-earth-060614-105156.

Frankcombe, L. M., M. H. England, M. E. Mann, and B. A.

Steinman, 2015: Separating internal variability from the ex-

ternally forced climate response. J. Climate, 28, 8184–8202,

https://doi.org/10.1175/JCLI-D-15-0069.1.

Gregory, J., and Coauthors, 2004: A new method for diagnosing

radiative forcing and climate sensitivity. Geophys. Res. Lett.,

31, L03205, https://doi.org/10.1029/2003GL018747.

Johnson, G. C., and A. N. Birnbaum, 2017: As El Niño builds,

Pacific warm pool expands, ocean gains more heat. Geophys.

Res. Lett., 44, 438–445, https://doi.org/10.1002/2016GL071767.

Kaiser, H. F., 1958: The varimax criterion for analytic rotation in

factor analysis. Psychometrika, 23, 187–200, https://doi.org/

10.1007/BF02289233.

Keenlyside, N., M. Latif, J. Jungclaus, L. Kornblueh, and

E. Roeckner, 2008: Advancing decadal-scale climate pre-

diction in the North Atlantic sector. Nature, 453, 84–88,

https://doi.org/10.1038/nature06921.

Knutti, R., M. A. Rugenstein, and G. C. Hegerl, 2017: Beyond

equilibrium climate sensitivity. Nat. Geosci., 10, 727–736,

https://doi.org/10.1038/ngeo3017.

Kociuba, G., and S. B. Power, 2015: Inability of CMIP5 models

to simulate recent strengthening of the Walker circulation:

Implications for projections. J. Climate, 28, 20–35, https://

doi.org/10.1175/JCLI-D-13-00752.1.

Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied

to equatorial Pacific surface cooling. Nature, 501, 403–407,

https://doi.org/10.1038/nature12534.

Laepple, T., and P. Huybers, 2014: Global and regional variability

in marine surface temperatures.Geophys. Res. Lett., 41, 2528–

2534, https://doi.org/10.1002/2014GL059345.

Latif, M., T. Martin, and W. Park, 2013: Southern Ocean sector cen-

tennial climate variability and recent decadal trends. J. Climate,

26, 7767–7782, https://doi.org/10.1175/JCLI-D-12-00281.1.

Lewis, N., and J. A. Curry, 2015: The implications for climate sen-

sitivity ofAR5 forcing and heat uptake estimates.ClimateDyn.,

45, 1009–1023, https://doi.org/10.1007/s00382-014-2342-y.

L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal

strengthening of the Walker circulation across the tropical

Pacific. Nat. Climate Change, 3, 571–576, https://doi.org/

10.1038/nclimate1840.

Li, Z., W. Zhang, F.-F. Jin, M. F. Stuecker, C. Sun, A. F. Levine,

H. Xu, and C. Liu, 2020: A robust relationship between mul-

tidecadal global warming rate variations and the Atlantic

multidecadal variability. Climate Dyn., 55, 1945–1959, https://

doi.org/10.1007/s00382-020-05362-8.

Liu, W., S.-P. Xie, and J. Lu, 2016: Tracking ocean heat uptake

during the surface warming hiatus. Nat. Commun., 7, 10926,

https://doi.org/10.1038/ncomms10926.

Loeb, N. G., W. Su, and S. Kato, 2016: Understanding climate

feedbacks and sensitivity using observations of Earth’s energy

budget.Curr. Climate Change Rep., 2, 170–178, https://doi.org/

10.1007/s40641-016-0047-5.

Lutsko, N. J., 2018: The relationship between cloud radiative effect

and surface temperature variability at El Niño–Southern
Oscillation frequencies in CMIP5 models. Geophys. Res.

Lett., 45, 10–599, https://doi.org/10.1029/2018GL079236.

——, and K. Takahashi, 2018: What can the internal variability of

CMIP5models tell us about their climate sensitivity? J. Climate,

31, 5051–5069, https://doi.org/10.1175/JCLI-D-17-0736.1.

Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C.

Francis, 1997: A Pacific interdecadal climate oscillation with

impacts on salmon production. Bull. Amer. Meteor. Soc., 78,

1069–1080, https://doi.org/10.1175/1520-0477(1997)078,1069:

APICOW.2.0.CO;2.

Martin, T., W. Park, and M. Latif, 2013: Multi-centennial vari-

ability controlled by Southern Ocean convection in the Kiel

Climate Model. Climate Dyn., 40, 2005–2022, https://doi.org/

10.1007/s00382-012-1586-7.

Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E.

Trenberth, 2011: Model-based evidence of deep-ocean heat

8736 JOURNAL OF CL IMATE VOLUME 34

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 10/07/21 06:11 PM UTC

https://doi.org/10.1007/s00382-005-0040-5
https://doi.org/10.1175/1520-0469(2001)058<1371:RROEHA>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<1371:RROEHA>2.0.CO;2
https://doi.org/10.1002/2017GL074622
https://doi.org/10.1175/1520-0469(2001)058<1341:OPPITV>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<1341:OPPITV>2.0.CO;2
https://doi.org/10.1175/2010JCLI3659.1
https://doi.org/10.1175/2010JCLI3659.1
https://doi.org/10.3402/tellusa.v40i1.11780
https://doi.org/10.1029/1999GL010945
https://doi.org/10.1029/1999GL010945
https://doi.org/10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2
https://doi.org/10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2
https://doi.org/10.1175/JCLI-D-11-00640.1
https://doi.org/10.5194/acp-18-5147-2018
https://doi.org/10.1029/2007GL032838
https://doi.org/10.1175/JCLI-D-18-0843.1
https://doi.org/10.1038/nclimate2106
https://doi.org/10.1038/nclimate2106
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1146/annurev-earth-060614-105156
https://doi.org/10.1175/JCLI-D-15-0069.1
https://doi.org/10.1029/2003GL018747
https://doi.org/10.1002/2016GL071767
https://doi.org/10.1007/BF02289233
https://doi.org/10.1007/BF02289233
https://doi.org/10.1038/nature06921
https://doi.org/10.1038/ngeo3017
https://doi.org/10.1175/JCLI-D-13-00752.1
https://doi.org/10.1175/JCLI-D-13-00752.1
https://doi.org/10.1038/nature12534
https://doi.org/10.1002/2014GL059345
https://doi.org/10.1175/JCLI-D-12-00281.1
https://doi.org/10.1007/s00382-014-2342-y
https://doi.org/10.1038/nclimate1840
https://doi.org/10.1038/nclimate1840
https://doi.org/10.1007/s00382-020-05362-8
https://doi.org/10.1007/s00382-020-05362-8
https://doi.org/10.1038/ncomms10926
https://doi.org/10.1007/s40641-016-0047-5
https://doi.org/10.1007/s40641-016-0047-5
https://doi.org/10.1029/2018GL079236
https://doi.org/10.1175/JCLI-D-17-0736.1
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
https://doi.org/10.1007/s00382-012-1586-7
https://doi.org/10.1007/s00382-012-1586-7


uptake during surface-temperature hiatus periods.Nat. Climate

Change, 1, 360–364, https://doi.org/10.1038/nclimate1229.

——, A. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013:

Externally forced and internally generated decadal climate

variability associatedwith the Interdecadal PacificOscillation.

J. Climate, 26, 7298–7310, https://doi.org/10.1175/JCLI-D-12-

00548.1.

Menary, M. B., D. L. Hodson, J. I. Robson, R. T. Sutton, and

R. A.Wood, 2015: Amechanism of internal decadal Atlantic

Ocean variability in a high-resolution coupled climate model.

J. Climate, 28, 7764–7785, https://doi.org/10.1175/JCLI-D-15-

0106.1.

Middlemas, E. A., and A. C. Clement, 2016: Spatial patterns and

frequency of unforced decadal-scale changes in global mean

surface temperature in climate models. J. Climate, 29, 6245–

6257, https://doi.org/10.1175/JCLI-D-15-0609.1.

——, ——, B. Medeiros, and B. Kirtman, 2019: Cloud radiative

feedbacks and El Niño–Southern Oscillation. J. Climate, 32,

4661–4680, https://doi.org/10.1175/JCLI-D-18-0842.1.

Muller, R. A., and Coauthors, 2013: Decadal variations in the

global atmospheric land temperatures. J. Geophys. Res., 118,

5280–5286, https://doi.org/10.1002/jgrd.50458.

Newman, M., and Coauthors, 2016: The Pacific decadal oscillation,

revisited. J. Climate, 29, 4399–4427, https://doi.org/10.1175/

JCLI-D-15-0508.1.

North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982:

Sampling errors in the estimation of empirical orthogonal

functions. Mon. Wea. Rev., 110, 699–706, https://doi.org/

10.1175/1520-0493(1982)110,0699:SEITEO.2.0.CO;2.

Oldenburg, D., R. C. J.Wills, K. C. Armour, L. Thompson, andL. C.

Jackson, 2021: Mechanisms of low-frequency variability in

North Atlantic Ocean heat transport and AMOC. J. Climate,

34, 4733–4755, https://doi.org/10.1175/JCLI-D-20-0614.1.

Olonscheck, D., M. Rugenstein, and J. Marotzke, 2020: Broad con-

sistency between observed and simulated trends in sea surface

temperature patterns.Geophys. Res. Lett., 47, e2019GL086773,

https://doi.org/10.1029/2019GL086773.

Otto, A., and Coauthors, 2013: Energy budget constraints on climate

response.Nat.Geosci.,6, 415–416, https://doi.org/10.1038/ngeo1836.

Palmer, M. D., D. J. McNeall, and N. J. Dunstone, 2011:

Importance of the deep ocean for estimating decadal changes

in Earth’s radiation balance. Geophys. Res. Lett., 38, L13707,

https://doi.org/10.1029/2011GL047835.

Pan, Y. H. and and A. H. Oort, 1983: Global climate variations

connected with sea surface temperature anomalies in the east-

ern equatorial Pacific Ocean for the 1958–73 period.Mon. Wea.

Rev., 111, 1244–1258, https://doi.org/10.1175/1520-0493(1983)

111,1244:GCVCWS.2.0.CO;2.

Parsons, L. A., and G. J. Hakim, 2019: Local regions associated

with interdecadal global temperature variability in the Last

Millennium Reanalysis and CMIP5 models. J. Geophys. Res.,

124, 9905–9917, https://doi.org/10.1029/2019JD030426.

——, M. K. Brennan, R. C. Wills, and C. Proistosescu, 2020:

Magnitudes and spatial patterns of interdecadal temperature

variability in CMIP6.Geophys. Res. Lett., 47, e2019GL086588,

https://doi.org/10.1029/2019GL086588.

Pedro, J. B., T. Martin, E. J. Steig, M. Jochum, W. Park, and S. O.

Rasmussen, 2016: Southern ocean deep convection as a driver

of Antarctic warming events. Geophys. Res. Lett., 43, 2192–

2199, https://doi.org/10.1002/2016GL067861.

Philander, S. G., 1989: El Niño, La Niña, and the Southern

Oscillation. International Geophysics Series, Vol. 46, Academic

Press, 293 pp.

Proistosescu, C., A. Donohoe, K. C. Armour, G. H. Roe, M. F.

Stuecker, and C. M. Bitz, 2018: Radiative feedbacks from

stochastic variability in surface temperature and radiative

imbalance.Geophys. Res. Lett., 45, 5082–5094, https://doi.org/

10.1029/2018GL077678.

Rädel, G., T. Mauritsen, B. Stevens, D. Dommenget, D. Matei,

K. Bellomo, and A. Clement, 2016: Amplification of El Niño
by cloud longwave coupling to atmospheric circulation. Nat.

Geosci., 9, 106–110, https://doi.org/10.1038/ngeo2630.

Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in

tropical sea surface temperature and surface wind fields as-

sociated with the Southern Oscillation/El Niño. Mon. Wea.

Rev., 110, 354–384, https://doi.org/10.1175/1520-0493(1982)

110,0354:VITSST.2.0.CO;2.

Reintges, A., T. Martin, M. Latif, and W. Park, 2017: Physical

controls of Southern Ocean deep-convection variability in

CMIP5 models and the Kiel Climate Model. Geophys. Res.

Lett., 44, 6951–6958, https://doi.org/10.1002/2017GL074087.

Risbey, J. S., S. Lewandowsky, C. Langlais, D. P. Monselesan,

T. J. O’Kane, and N. Oreskes, 2014: Well-estimated global

surface warming in climate projections selected for ENSO

phase. Nat. Climate Change, 4, 835–840, https://doi.org/10.1038/

nclimate2310.

Schmeisser, L., T. Ackerman, and N. Bond, 2020: Marine heat-

waves confirm cloud response to warming in global climate

models. Earth Space Sci. Open Arch.,https://doi.org/10.1002/

essoar.10503088.1.

Schneider, T., and S. M. Griffies, 1999: A conceptual framework for

predictability studies. J. Climate, 12, 3133–3155, https://doi.org/

10.1175/1520-0442(1999)012,3133:ACFFPS.2.0.CO;2.

——, and I. M. Held, 2001: Discriminants of twentieth-century changes

in Earth surface temperatures. J. Climate, 14, 249–254, https://

doi.org/10.1175/1520-0442(2001)014,0249:LDOTCC.2.0.CO;2.

Sherwood, S., and Coauthors, 2020: An assessment of Earth’s

climate sensitivity using multiple lines of evidence. Rev.

Geophys., 58, e2019RG000678, https://doi.org/10.1029/

2019RG000678.

Stolpe, M. B., I. Medhaug, and R. Knutti, 2017: Contribution of

Atlantic and Pacific multidecadal variability to twentieth-

century temperature changes. J. Climate, 30, 6279–6295,

https://doi.org/10.1175/JCLI-D-16-0803.1.

——, ——, J. Sedlá�cek, and R. Knutti, 2018: Multidecadal vari-

ability in global surface temperatures related to the Atlantic

meridional overturning circulation. J. Climate, 31, 2889–2906,

https://doi.org/10.1175/JCLI-D-17-0444.1.

Stuecker, M. F., and Coauthors, 2018: Polar amplification domi-

nated by local forcing and feedbacks. Nat. Climate Change, 8,

1076–1081, https://doi.org/10.1038/s41558-018-0339-y.

Takahashi, K., A.Montecinos, K.Goubanova, andB. Dewitte, 2011:

ENSO regimes: Reinterpreting the canonical and Modoki El

Niño. Geophys. Res. Lett., 38, L10707, https://doi.org/10.1029/

2011GL047364.

Timmermann,A., andCoauthors, 2018: El Niño–SouthernOscillation

complexity. Nature, 559, 535–545, https://doi.org/10.1038/s41586-

018-0252-6.

Ting, M., Y. Kushnir, R. Seager, andC. Li, 2009: Forced and internal

twentieth-century SST trends in the North Atlantic. J. Climate,

22, 1469–1481, https://doi.org/10.1175/2008JCLI2561.1.

Trenberth, K. E., and J. T. Fasullo, 2013: An apparent hiatus in

global warming? Earth’s Future, 1, 19–32, https://doi.org/

10.1002/2013EF000165.

——, J.M. Caron, D. P. Stepaniak, and S.Worley, 2002: Evolution of

El Niño–Southern Oscillation and global atmospheric surface

1 NOVEMBER 2021 W I L L S ET AL . 8737

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 10/07/21 06:11 PM UTC

https://doi.org/10.1038/nclimate1229
https://doi.org/10.1175/JCLI-D-12-00548.1
https://doi.org/10.1175/JCLI-D-12-00548.1
https://doi.org/10.1175/JCLI-D-15-0106.1
https://doi.org/10.1175/JCLI-D-15-0106.1
https://doi.org/10.1175/JCLI-D-15-0609.1
https://doi.org/10.1175/JCLI-D-18-0842.1
https://doi.org/10.1002/jgrd.50458
https://doi.org/10.1175/JCLI-D-15-0508.1
https://doi.org/10.1175/JCLI-D-15-0508.1
https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
https://doi.org/10.1175/JCLI-D-20-0614.1
https://doi.org/10.1029/2019GL086773
https://doi.org/10.1038/ngeo1836
https://doi.org/10.1029/2011GL047835
https://doi.org/10.1175/1520-0493(1983)111<1244:GCVCWS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1983)111<1244:GCVCWS>2.0.CO;2
https://doi.org/10.1029/2019JD030426
https://doi.org/10.1029/2019GL086588
https://doi.org/10.1002/2016GL067861
https://doi.org/10.1029/2018GL077678
https://doi.org/10.1029/2018GL077678
https://doi.org/10.1038/ngeo2630
https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
https://doi.org/10.1002/2017GL074087
https://doi.org/10.1038/nclimate2310
https://doi.org/10.1038/nclimate2310
https://doi.org/10.1002/essoar.10503088.1
https://doi.org/10.1002/essoar.10503088.1
https://doi.org/10.1175/1520-0442(1999)012<3133:ACFFPS>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<3133:ACFFPS>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<0249:LDOTCC>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<0249:LDOTCC>2.0.CO;2
https://doi.org/10.1029/2019RG000678
https://doi.org/10.1029/2019RG000678
https://doi.org/10.1175/JCLI-D-16-0803.1
https://doi.org/10.1175/JCLI-D-17-0444.1
https://doi.org/10.1038/s41558-018-0339-y
https://doi.org/10.1029/2011GL047364
https://doi.org/10.1029/2011GL047364
https://doi.org/10.1038/s41586-018-0252-6
https://doi.org/10.1038/s41586-018-0252-6
https://doi.org/10.1175/2008JCLI2561.1
https://doi.org/10.1002/2013EF000165
https://doi.org/10.1002/2013EF000165


temperatures. J. Geophys. Res., 107, 4065, https://doi.org/

10.1029/2000JD000298.

Tung, K.-K., X. Chen, J. Zhou, and K.-F. Li, 2018: Interdecadal

variability in pan-Pacific and global SST, revisited. Climate

Dyn., 52, 2145–2157, https://doi.org/10.1007/s00382-018-4240-1.

Venzke, S., M. R. Allen, R. T. Sutton, and D. P. Rowell, 1999: The

atmospheric response over the North Atlantic to decadal

changes in sea surface temperature. J. Climate, 12, 2562–2584,
https://doi.org/10.1175/1520-0442(1999)012,2562:

TAROTN.2.0.CO;2.

Watanabe,M., J.-L. Dufresne, Y. Kosaka, T.Mauritsen, andH. Tatebe,

2021: Enhanced warming constrained by past trends in equatorial

Pacific sea surface temperature gradient. Nat. Climate Change, 11,

33–37, https://doi.org/10.1038/s41558-020-00933-3.

Wigley, T., 2000: ENSO, volcanoes and record-breaking temper-

atures. Geophys. Res. Lett., 27, 4101–4104, https://doi.org/

10.1029/2000GL012159.

Wills, R. C. J., X. J. Levine, and T. Schneider, 2017: Local energetic

constraints on Walker circulation strength. J. Atmos. Sci., 74,
1907–1922, https://doi.org/10.1175/JAS-D-16-0219.1.

——, T. Schneider, J. M. Wallace, D. S. Battisti, and D. L.

Hartmann, 2018: Disentangling global warming, multidecadal

variability, and El Niño in Pacific temperatures.Geophys. Res.

Lett., 45, 2487–2496, https://doi.org/10.1002/2017GL076327.

——, K. C. Armour, D. S. Battisti, and D. L. Hartmann, 2019a:

Ocean–atmosphere dynamic coupling fundamental to the

Atlantic multidecadal oscillation. J. Climate, 32, 251–272,

https://doi.org/10.1175/JCLI-D-18-0269.1.

——,D. S. Battisti, C. Proistosescu, L. Thompson, D. L. Hartmann,

and K. C. Armour, 2019b: Ocean circulation signatures of

North Pacific decadal variability. Geophys. Res. Lett., 46,

1690–1701, https://doi.org/10.1029/2018GL080716.

——, ——, K. C. Armour, T. Schneider, and C. Deser, 2020:

Pattern recognition methods to separate forced responses

from internal variability in climate model ensembles and ob-

servations. J. Climate, 33, 8693–8719, https://doi.org/10.1175/

JCLI-D-19-0855.1.

Xie, S.-P., Y. Kosaka, and Y. M. Okumura, 2016: Distinct energy

budgets for anthropogenic and natural changes during global

warming hiatus.Nat. Geosci., 9, 29–33, https://doi.org/10.1038/

ngeo2581.

Yeager, S. G., A. R. Karspeck, and G. Danabasoglu, 2015:

Predicted slowdown in the rate of Atlantic sea ice loss.

Geophys. Res. Lett., 42, 10 704–10 713, https://doi.org/10.1002/

2015GL065364.

Yuan, T., L. Oreopoulos, M. Zelinka, H. Yu, J. R. Norris, M. Chin,

S. Platnick, and K. Meyer, 2016: Positive low cloud and dust

feedbacks amplify tropical North Atlantic multidecadal os-

cillation. Geophys. Res. Lett., 43, 1349–1356, https://doi.org/
10.1002/2016GL067679.

Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern
Oscillation. Mon. Wea. Rev., 115, 2262–2278, https://doi.org/

10.1175/1520-0493(1987)115,2262:AMENO.2.0.CO;2.

Zhang, L., T. L. Delworth, and L. Jia, 2017: Diagnosis of decadal

predictability of Southern Ocean sea surface temperature in

the GFDL CM2.1 model. J. Climate, 30, 6309–6328, https://
doi.org/10.1175/JCLI-D-16-0537.1.

Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic

multidecadal oscillation on North Pacific climate variability.

Geophys. Res. Lett., 34, L23708, https://doi.org/10.1029/

2007GL031601.

——,——, and I. M. Held, 2007: Can the Atlantic Ocean drive the

observed multidecadal variability in Northern Hemisphere

mean temperature? Geophys. Res. Lett., 34, L02709, https://
doi.org/10.1029/2006GL028683.

——, R. Sutton, G. Danabasoglu, Y.-O. Kwon, R. Marsh, S. G.

Yeager, D. E.Amrhein, andC.M. Little, 2019: A review of the

role of the Atlantic meridional overturning circulation in

Atlantic multidecadal variability and associated climate im-

pacts. Rev. Geophys., 57, 316–375, https://doi.org/10.1029/

2019RG000644.

Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like inter-

decadal variability: 1900–93. J. Climate, 10, 1004–1020, https://

doi.org/10.1175/1520-0442(1997)010,1004:ELIV.2.0.CO;2.

Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal

cloud variations on the Earth’s energy budget.Nat. Geosci., 9,

871–874, https://doi.org/10.1038/ngeo2828.

——, ——, and ——, 2017: Analyzing the dependence of global

cloud feedback on the spatial pattern of sea surface tem-

perature change with a Green’s function approach. J. Adv.

Model. Earth Syst., 9, 2174–2189, https://doi.org/10.1002/

2017MS001096.

8738 JOURNAL OF CL IMATE VOLUME 34

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 10/07/21 06:11 PM UTC

https://doi.org/10.1029/2000JD000298
https://doi.org/10.1029/2000JD000298
https://doi.org/10.1007/s00382-018-4240-1
https://doi.org/10.1175/1520-0442(1999)012<2562:TAROTN>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2562:TAROTN>2.0.CO;2
https://doi.org/10.1038/s41558-020-00933-3
https://doi.org/10.1029/2000GL012159
https://doi.org/10.1029/2000GL012159
https://doi.org/10.1175/JAS-D-16-0219.1
https://doi.org/10.1002/2017GL076327
https://doi.org/10.1175/JCLI-D-18-0269.1
https://doi.org/10.1029/2018GL080716
https://doi.org/10.1175/JCLI-D-19-0855.1
https://doi.org/10.1175/JCLI-D-19-0855.1
https://doi.org/10.1038/ngeo2581
https://doi.org/10.1038/ngeo2581
https://doi.org/10.1002/2015GL065364
https://doi.org/10.1002/2015GL065364
https://doi.org/10.1002/2016GL067679
https://doi.org/10.1002/2016GL067679
https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
https://doi.org/10.1175/JCLI-D-16-0537.1
https://doi.org/10.1175/JCLI-D-16-0537.1
https://doi.org/10.1029/2007GL031601
https://doi.org/10.1029/2007GL031601
https://doi.org/10.1029/2006GL028683
https://doi.org/10.1029/2006GL028683
https://doi.org/10.1029/2019RG000644
https://doi.org/10.1029/2019RG000644
https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
https://doi.org/10.1038/ngeo2828
https://doi.org/10.1002/2017MS001096
https://doi.org/10.1002/2017MS001096

