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A new thrust in climate and earth 
system modeling is to conduct 
an ensemble of simulations 
using the same model and 
radiative forcing protocol but 
varying the initial conditions. 
The resulting spread across 
the model ensemble, which 
is due solely to unpredictable 
internally-generated variability, 
places inherent limits on our 
ability to predict future climate 
change at regional and decadal 
scales. Such “initial-condition 
Large Ensembles” (LEs) also 
provide crucial context for 
understanding and interpreting 
the observational record, and 
foster robust model evaluation 
and inter-comparison by 
allowing the forced response to 
be separated from internally-
generated variability. LEs also 
advance the study of extreme 

The identification of externally forced climate changes in the presence 
of internal climate variability is critical across many aspects of climate 

science, such as in attributing the causes of observed changes in weather 
and climate (Hegerl et al. 2007; Bindoff et al. 2013), understanding sources 
of uncertainty in future climate projections (Hawkins and Sutton 2009; 
Lehner et al. 2020), and improving predictions of internal climate variability 
on multi-year timescales (Meehl et al. 2014; Yeager et al. 2018). Single-model 
initial-condition large ensembles (SMILEs), ensembles of simulations with 
the same model and radiative forcing scenario but small differences in initial 
conditions, have become widely utilized for these purposes (Kay et al. 2015; 
Maher et al. 2019; Deser et al. 2020a). The forced response can be estimated 
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events by providing a large 
number of samples of “rare” 
occurrences.  

In this edition of Variations, we 
showcase new applications of 
LEs to the understanding of 
climate variability and change 
on regional and decadal scales. 
These articles, written by early-
career researchers at the 
forefront of their fields, span 
a range of emerging topics 
including air quality and health, 
ocean biogeochemistry, best 
practices for evaluating models’ 
internal variability, tools for 
quantifying forced changes in 
internal variability, and novel 
pattern recognition methods 
for detection and attribution. 
Many of these studies make use 
of a new multi-model archive 
of LEs conducted with CMIP5 
models produced by the US 
CLIVAR Working Group on Large 
Ensembles, publicly available 
at http://www.cesm.ucar.edu/
projects/community-projects/
MMLEA/.  This archive, along 
with LEs being conducted with 
CMIP6 models, herald a new era 
in climate science research and 
applications, and hold promise 
for new discoveries in the years 
to come.
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by averaging over the ensemble to remove internal variability that varies in 
phase between realizations. However, estimates of the forced response based 
on SMILEs are susceptible to any biases in the modeled forced response. It 
is therefore important to compare estimates of the forced response (e.g., a 
spatial pattern of change) across different models and to compare model-
based estimates with estimates of the forced response from observations.

In order to estimate the forced climate response from observations, where 
only a single realization is available, a different approach is needed. Pattern 
recognition methods, including pattern-based statistical learning, and artificial 
intelligence, have particular utility because of the differences in spatial pattern 
between forced climate change and internal variability. For example, the 
climate response to anthropogenic greenhouse gas emissions is clearest at 
the global scale, where it manifests itself, for example, in warming of global-
mean surface temperature. On the other hand, internal variability primarily 
redistributes heat between one region and another (or between the ocean and 
the atmosphere), such that it has a strong influence on regional climate but only 
a modest influence on global-mean surface temperature. Pattern differences 
can also extend to differences in vertical structure (e.g., Santer et al. 1996) or 
differences in the representation across multiple variables. Such differences in 
pattern between the signal and the noise have been exploited by a wide range 
of methods including standard detection and attribution methods (Hasselmann 
1979; 1993; Bell 1986; Santer et al. 1995a; Hegerl et al. 1996; 2007; Bindoff et 
al. 2013), signal-to-noise-maximizing pattern analysis (Allen and Smith 1997; 
Schneider and Griffies 1999; Schneider and Held 2001; Ting et al. 2009; DelSole 
et al. 2011; Wills et al. 2018; 2020), dynamical adjustment (Wallace et al. 2012; 
Smoliak et al. 2015; Deser et al. 2016; Sippel et al. 2019), regularized regression 
(e.g., Sippel et al. 2020) and artificial neural networks (Barnes et al. 2019; 2020).

Large ensembles provide a testbed for methods to estimate the forced climate 
response from observations, but at the same time, the analysis of large 
ensembles can benefit from the use of pattern recognition methods. Within 
SMILES, statistical methods to estimate the forced response can be tested on 
individual ensemble members and then compared to the “true” forced response 
as estimated from the ensemble mean over a sufficiently large ensemble (e.g., 
Deser et al. 2016; Frankignoul et al. 2017; Sippel et al. 2019; Wills et al. 2020). 
However, for regional anomalies with a large amplitude of internal variability, 
the number of ensemble members needed to isolate the forced response 
with an ensemble average can become prohibitively large, with 50 or more 
ensemble members needed (Deser et al. 2012; Milinski et al. 2019). In much 
the same way that pattern recognition methods can be trained to estimate 
the forced response from observations, they can be trained to estimate the 
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forced response from a subset of ensemble members, 
reducing the number of ensemble members needed 
by up to a factor of ten in some cases (Wills et al. 2020).

Here, we give a brief example of the utility of pattern 
recognition methods and discuss how to best leverage 
a combination of pattern recognition methods and 
climate model ensembles to make progress on 

important questions related to separating forced and 
unforced components of climate change. Two research 
areas where the combination of pattern recognition 
methods and climate model ensembles have the 
potential to lead to major advances in understanding 
are in the analysis of structural uncertainty in 
climate projections and in characterizing the time 
evolving patterns of climate signal and climate noise.

Figure 1. (a) Signal-to-noise ratio of seasonal (3-month-average) surface temperature anomalies in the CESM Large Ensemble (Kay et al. 2015) 
over the period 1920-2019. (b) Signal-to-noise ratio of signal-to-noise-maximizing (S/N-maximizing) patterns (Ting et al. 2009; Wills et al. 2020) of 
CESM-LE and comparison to range of signal-to-noise ratios for individual grid points (histogram on right axis), global-mean surface temperature, 
and US-mean surface temperature (dashed lines). (c) First S/N-maximizing pattern. (d) Time series of first S/N-maximizing pattern, global-mean 
surface temperature anomaly, and US-mean surface temperature anomaly. All anomalies are with respect to a 1920-1950 reference period. 
Grey lines show the time series in all 40 ensemble members, black lines show the ensemble mean, and orange lines show the HadCRUT4 
observational temperature reconstruction (Cowtan and Way 2014). All analysis is done on a 5° longitude by 3.75° latitude grid.
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The utility of pattern information

To illustrate the utility of pattern information, we 
compare the signal-to-noise ratio (SNR) of individual 
grid points within the CESM Large Ensemble (Kay et 
al. 2015) to that of the signal-to-noise-maximizing 
(S/N-maximizing) patterns, which are patterns 
that maximize the SNR within a truncated space of 
empirical orthogonal functions (Schneider and Griffies 
1999; Ting et al. 2009; DelSole et al. 2011; Wills et al. 
2020). Here, the signal is diagnosed using an ensemble 
average. The SNR is highest in the subtropical oceans 
and tropical land masses and lowest in the tropical 
Pacific and Northern Hemisphere midlatitudes (Figure 
1a). However, even the grid points with the highest 
SNR (1.5 in the Indian Ocean sector of the Southern 
Ocean; 1.3 in Borneo) have SNRs over an order of 
magnitude lower than the leading S/N-maximizing 
pattern (SNR = 19, Figure 1b, c, d), which captures 
71% of the ensemble-mean variance (i.e., the forced 
response). The S/N-maximizing pattern leverages 
information about the full spatial patterns of signal 
and noise, while the SNR computed for each grid point 
separately misses out on these spatial dependencies/
relationships. The space of S/N-maximizing patterns is 
thus a useful basis for separating signal and noise within 
large ensembles and for reducing the dimensionality 
of the forced response. For example, Wills et al. (2020) 
truncate to just the leading ~10 S/N-maximizing 
patterns (which together capture 84% of the ensemble-
mean variance) before taking an ensemble average, 
thereby reducing aliasing of internal variability onto 
the estimated forced response. A complimentary 
approach is that of dynamical adjustment (Wallace 
et al. 2012; Smoliak et al. 2015; Deser et al. 2016; 
Sippel et al. 2019), which identifies and removes 
patterns with low SNR based on their association 
with anomalies in the atmospheric circulation.

The utility of pattern information has long been 
recognized for the problem of detection and attribution 
of climate change (Hasselmann 1979; 1993; Bell 1986; 
Santer et al. 1995a; Hegerl et al. 1996), which seeks to 

detect a hypothesized climate response pattern (e.g., 
based on model simulations under specific forcing 
scenarios) within observations by identifying an “optimal 
fingerprint” that best distinguishes the response of 
interest from the background of internal variability. 
Unlike methods for characterizing the spatiotemporal 
evolution of the forced climate response (e.g., ensemble 
averaging, S/N-maximizing pattern analysis, dynamical 
adjustment), the goal of climate change detection is 
to determine whether a given forced response has 
occurred. The recent application of ideas from machine 
learning (e.g., ridge regression and neural networks), 
as well as the increasing magnitude of the climate 
signal itself, now allow detection of forced climate 
change from, for example, an individual year or day 
of data (Barnes et al. 2019; 2020; Sippel et al. 2020).

Fundamental to the climate change detection problem 
is the identification of a fingerprint or indicator 
pattern (e.g., Figure 2a) that represents how to 
weight observations in order to obtain a detection 
variable with high SNR. The same statistical machinery 
underlies S/N-maximizing pattern analysis, except that 
the response pattern (i.e., the S/N-maximizing pattern, 
Figure 1b) is determined empirically within a single 
climate-model dataset, rather than being imposed as 
a hypothesized response (i.e., no training is required). 
Each S/N-maximizing pattern has a corresponding 
fingerprint pattern, which is determined by multiplying 
the response pattern by the inverse covariance matrix 
(regularized by truncating in empirical orthogonal 
function space) and looks similar to those used in 
climate change detection applications (cf. Figure 
2a; Hegerl et al. 1996; Sippel et al. 2020; Barnes et 
al. 2020). In our CESM Large Ensemble example, the 
projection of this fingerprint pattern onto observed 
temperatures (upper orange line in Figure 1d) shows 
a long-term trend in the S/N-maximizing pattern that 
emerges beyond the range of internal variability.

Analysis of structural uncertainty in climate 
projections
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Multi-model ensembles (e.g., the Coupled Model 
Intercomparison Project [CMIP]) have enabled 
substantial progress on the quantification of structural 
uncertainty in climate projections, i.e., differences in 
the forced climate response across models arising from 
differences in their formulation and tuning (e.g., Tebaldi 
and Knutti 2007). However, without multiple ensemble 
members from each of these models, structural 
uncertainty is partially confounded with uncertainty 
due to internal variability. Recently, a multi-model large 
ensemble archive (MMLEA) with seven different CMIP5-

class models has been compiled (Deser et al. 2020a), 
enabling a clear separation of structural uncertainty and 
internal variability in these models. Pattern recognition 
methods provide utility for identifying differences in 
the forced response between these large ensembles, 
for comparing with additional models that have fewer 
ensemble members, and for formulating hypotheses 
about the spatiotemporal structure of the forced 
response (vs. internal variability) in order to detect 
the forced response in observations or in “holdout” 
climate models that have not been used in training.

Model Average CESM1 CanESM2 CSIRO EC−EARTH GFDL MPI−ESM
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Figure 2. Illustration of the fingerprint for predicting the forced global-mean surface temperature response in the form of regression coefficients 
averaged over six different SMILEs for a fixed λ value (log10(λ) = 1.06). (b) Standard deviation of regression coefficients across different SMILEs, 
highlighting regions of model disagreement on the regression coefficients to optimally predict the forced global-mean surface temperature 
response. (c) Mean squared errors (in (°C)2) calculated for the prediction of the annual-mean global-mean forced temperature response (from 
any year’s spatial temperature pattern) for an average across models and from each individual SMILE. Colors indicate mean squared errors for 
(i) training and testing on a single SMILE (green bars), (ii) training on a single SMILE X and testing on all other models (LENS[-X], orange bars), 
and (iii) training on all but one model X (LENS[-X]) and testing on the SMILE X not used in training (blue bars). All analysis is done for the period 
1951-2020 on a 5° longitude by 5° latitude grid. GFDL indicates a combination of the GFDL-CM3 and GFDL-ESM2M large ensembles.
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One useful way to use pattern recognition methods 
in the analysis of multi-model ensembles is to apply 
the pattern recognition methods separately to each 
model (e.g., Wills et al. 2020), allowing identification 
of inter-model differences in the forced response, 
which can help identify and better understand model 
biases. Pattern recognition methods also reduce the 
number of ensemble members needed to isolate the 
forced response (Sippel et al. 2019; Wills et al. 2018; 
2020), enabling analysis of structural uncertainty 
in climate projections in climate model ensembles 
ranging from the MMLEA to the broader CMIP archive.

For the purpose of detecting the forced climate 
response in observations, transferability of fingerprints 
extracted from imperfect models to observations 
becomes an important aspect. In detection and 
attribution, fingerprints of the expected forced 
response are extracted from models, and observations 
are only used in a second step (i.e., they are projected 
onto the fingerprints) to test whether the expected 
forced response can be detected in observations (e.g., 
Hegerl et al. 1996). The different patterns of forced 
response and internal variability across climate models 
(and imperfect knowledge of them in observations) 
offers an opportunity to utilize the heterogeneity 
provided by multi-model ensembles to increase 
the transferability of fingerprints to observations.

The benefit of pattern heterogeneity in multi-model 
ensembles for climate change detection is illustrated 
in Figure 2. We train a statistical model that predicts 
the forced (i.e., the ensemble mean) global-mean 
surface temperature response from the spatial 
pattern of surface temperatures. For the extraction 
of regression coefficients, we use ridge regression, a 
statistical learning technique able to deal with a large 
number of predictors, which avoids overfitting via a 
regularization parameter λ. For illustration, λ is fixed 
in this analysis to log10(λ) = 1.06, producing close to 
the minimum error when predicting a model not used 
in training (for details on ridge regression, see Hastie 
et al. 2009; for details on the climate application, 

see Sippel et al. 2020 and Barnes et al. 2020).

Training on each SMILE separately: Low error on 
training model, but poor transfer across models

We first train a ridge regression model for each of six 
SMILEs (CESM1, CanESM2, CSIRO, EC-Earth, GFDL, MPI-
ESM) from the MMLEA. The average regression coefficients 
across the six individual models are illustrated in Figure 
2a, indicating regions with high SNR to predict the forced 
response (cf. Figure 1a). These regions include tropical, 
subtropical, and some midlatitude regions, mainly in 
the world’s oceans, but with the notable exception of 
the eastern equatorial Pacific, which exhibits El Niño 
variability that is uninformative for diagnosing forced 
climate change. Similar results were found, and discussed 
in more detail, in Barnes et al. (2019; 2020) and Sippel et al. 
(2020). Structural differences in the representation of the 
forced response and internal variability are evident in the 
variation in regression coefficients across models (Figure 
2b). Regions of large disagreement include the western 
tropical Pacific, possibly indicative of Pacific cold tongue 
biases between models (Li et al. 2016), as well as regions 
in the Southern Ocean and the eastern subtropical Pacific.

We calculate the mean squared error (MSE) for the forced 
response prediction when the ridge regression model 
is trained and tested on the same model (green bars in 
Figure 2c). These errors are relatively small (~0.0045 (°C)2, 
corresponding to a root mean squared error of ~0.067°C).  
However, because models differ in their representation 
of forced response and internal variability (Figure 2b), 
the fingerprint of SMILE X is expected to be suboptimal 
for predicting the forced response in models other than 
X (termed LENS[-X]). To test this, we show the MSE for 
predicting LENS[-X] using the fingerprint extracted only 
from SMILE X (orange bars in Figure 2c). As expected, the 
errors are higher when the fingerprint of a single model 
is used to predict the forced response in all other models 
(e.g., in the “all-model average”, MSE is about double that of 
the single-model MSE; orange vs. green bars in Figure 2c).
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Training on multiple SMILEs: improved transferability 
across models

Training on multiple models substantially improves the 
fingerprint transfer to an “unseen model.” To demonstrate 
this, we train a second set of statistical models on all but 
one model (LENS[-X]) and evaluate the MSE for the model 
X not used in training. The prediction error is substantially 
reduced using the multi-model fingerprints instead of the 
single-model fingerprints (e.g., in the “all model average”, 
MSE is reduced by around 30%; purple vs. orange bars 
in Figure 2c). Training across multiple models allows 
the algorithm to sample the heterogeneity of multi-
model ensembles and improves the transferability of 
the resulting fingerprint to different, unseen models. If 
one adopts the assumption that the forced response and 
internal variability in observations may behave similarly 
to an “unseen model” in our example, then training 
across multiple models would be expected to improve 
the identification of the forced response in observations 
(e.g., Barnes et al. 2019, 2020; Sippel et al. 2020).

While an individual SMILE indeed provides a 
methodological testbed (as discussed in Deser et al. 
2020a), evaluating expected error based on a single 
SMILE may not provide a representative evaluation of 
the transferability of a method or extracted feature/
fingerprint to other models or to observations.

Time evolving patterns of climate signal and climate 
noise

The forced climate response is generally more complex 
than can be captured by a single spatial pattern that 
amplifies in time. This spatiotemporal complexity can 
arise, for example, due to the superposition of multiple 
types of radiative forcing (e.g., greenhouse gasses, 
anthropogenic aerosols, volcanic sulfur emissions, ozone) 
during the historical period. However, even the climate 
response to greenhouse gas forcing in isolation is thought 
to have a spatial pattern that evolves in time. In climate 
models, the changing pattern of warming in response 
to an abrupt increase in CO2 concentrations plays an 

important role in the time evolution of global radiative 
feedbacks and global-mean surface temperature (Senior 
and Mitchell 2002; Armour et al. 2013; Andrews et al. 
2015; Proistosescu and Huybers 2017; Dong et al. 2019).

In practice, the time evolving pattern of warming means 
that pattern recognition methods need to consider 
multiple forced response patterns. For example, in a S/N-
maximizing pattern analysis of the CESM Large Ensemble 
over the period 1920-2019, the first ten patterns have 
SNRs that stand out from the continuum (Figure 1d). The 
higher order patterns (i.e., patterns 2-10) help to capture 
changes in seasonality and regional responses to forcing 
from anthropogenic aerosols and volcanic eruptions (Wills 
et al. 2020). While pattern recognition methods cannot by 
themselves distinguish between the effects of different 
types of radiative forcing within all-forcing simulations, 
they can help to characterize the differences between 
simulations with different radiative forcings, such as in large 
ensembles designed to isolate the influences of individual 
forcing agents (Santer et al. 2019; Deser et al. 2020b).

Formalisms for detecting multiple patterns of climate 
change and their evolution in time are not new 
(e.g., Santer et al. 1995a; Hegerl et al. 1997); these 
methods have been applied to increase confidence 
in the combined effect of greenhouse gasses and 
anthropogenic aerosols on observed temperature 
changes (see also Székely et al. 2019). Large ensembles 
provide new opportunities to apply these methods to 
quantify the impact of different forced response patterns 
over time, even in cases where a forced response is small 
relative to internal variability, and to quantify uncertainty 
in the time evolution of forced response patterns 
arising from internal variability (e.g., Santer et al. 2019).

Time evolution of the pattern of noise (variance) has 
received less attention than time evolution of the forced 
climate response. Partly this is due to modest changes 
in, for example, temperature variance over the historical 
period (Screen 2014), however, these changes will likely 
become larger in the future. Analogous to time evolving 
patterns of forced response, time evolving patterns of 
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noise can be addressed by including sufficient patterns 
to characterize the noise in both the reference climate 
and in the warmed climate (within existing methods 
such as optimal fingerprinting or S/N-maximizing 
patterns). However, nonlinear methods such as neural 
networks (Barnes et al. 2019; 2020) may be better 
suited to handle the coevolving patterns of climate 
signal and climate noise within climate change detection 
applications and could be explored in this context.

Discussion and conclusions

Forced climate change and internal variability have 
distinct spatial patterns. Pattern recognition methods 
can use this pattern information to separate forced and 
unforced components of climate change. Non-pattern-
based methods for isolating the forced component of 
climate change, such as computing secular trends or 
regressing against global-mean surface temperature, 
do not take this spatial information into account, and 
thus, are less able to separate these components.

Large ensembles provide another tool to separate forced 
and unforced components of climate change, but analysis 
of large ensembles should still be designed in a way as 
to take advantage of pattern information. Recent work 
has suggested that pattern recognition methods can 
dramatically reduce the number of ensemble members 
needed to isolate the forced response (Wills et al. 2020), 
even allowing an approximate identification of the 
forced response within individual ensemble members or 
observations (Sippel et al. 2019; Wills et al. 2018; 2020).

The pattern recognition methods discussed in this 
article are by no means an exhaustive list. Diverse 
pattern-based methods should be explored in future 
work aiming to separate the forced and unforced 
components of climate change. In particular, the 
vast majority of pattern-based methods used in the 
literature assume a linear superposition of the various 
influences on climate. Future work should explore if and 
when nonlinear methods provide improved separation 
of the climate response from internal variability.

Pattern recognition methods applied to large 
ensembles and observations have a strong potential 
to provide new frameworks for model evaluation 
and the analysis of structural uncertainty in climate 
projections, to improve the separation of forced 
and unforced components of climate change in 
observations, to separate the influences of different 
external forcings on climate changes, and to improve 
our understanding of the spatiotemporal evolution of 
climate change across multiple variables, from changes 
in average temperature to changes in climate extremes.
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