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ABSTRACT

The North Atlantic has shown large multidecadal temperature shifts during the twentieth century. There is

ongoing debate about whether this variability arises primarily through the influence of atmospheric internal

variability, through changes in ocean circulation, or as a response to anthropogenic forcing. This study isolates

themechanisms drivingAtlantic sea surface temperature variability onmultidecadal time scales by using low-

frequency component analysis (LFCA) to separate the influences of high-frequency variability, multidecadal

variability, and long-term global warming. This analysis objectively identifies the North Atlantic subpolar

gyre as the dominant region of Atlantic multidecadal variability. In unforced control runs of coupled climate

models, warm subpolar temperatures are associated with a strengthened Atlantic meridional overturning

circulation (AMOC) and anomalous local heat fluxes from the ocean into the atmosphere. Atmospheric

variability plays a role in the intensification and subsequent weakening of ocean overturning and helps to

communicate warming into the tropical Atlantic. These findings suggest that dynamical coupling between

atmospheric and oceanic circulations is fundamental to the Atlantic multidecadal oscillation (AMO) and

motivate approaching decadal prediction with a focus on ocean circulation.

1. Introduction

In both observations and climate models, North At-

lantic sea surface temperatures (SSTs) show spatially

coherent variability at multidecadal time scales. Periods

of higher-than-average SSTs are associated with warmer

summers over North America and western Europe

(Sutton and Hodson 2005), Arctic sea ice loss (Mahajan

et al. 2011; Day et al. 2012; Zhang 2015; Yeager et al.

2015), drought in the United States (Enfield et al. 2001;

McCabe et al. 2004; Nigam et al. 2011), drought relief in

the Sahel (Gray 1990; Zhang and Delworth 2006), and a

higher frequency of landfalling Atlantic hurricanes (Gray

1990; Goldenberg et al. 2001; Zhang andDelworth 2006).

Multiple physical mechanisms have been put forth to

explain this variability. Most studies have focused on the

role of internal variability in ocean circulation, principally

the Atlantic meridional overturning circulation (AMOC;

Delworth et al. 1993; Delworth and Mann 2000; Latif

et al. 2004; Knight et al. 2005;Medhaug andFurevik 2011;

Wang and Zhang 2013; Zhang and Wang 2013;

MacMartin et al. 2013; Ba et al. 2014; O’Reilly et al. 2016;

Kim et al. 2018). However, multidecadal temperature

variability can also arise from stochastic atmospheric

forcing of temperature anomalies stored in the ocean

mixed layer (Hasselmann 1976; Clement et al. 2015; Cane

et al. 2017). Additionally, some of the observed North

Atlantic temperature variability over the twentieth cen-

tury is thought to result from a response to external

forcing (Booth et al. 2012; Tandon and Kushner 2015; Si

and Hu 2017; Bellucci et al. 2017; Bellomo et al. 2018),

such as from greenhouse gasses, anthropogenic and

volcanic aerosols, and stratospheric ozone. Several

recent studies have suggested that atmospheric tele-

connections and cloud feedbacks are essential for multi-

decadal variability in the tropical North Atlantic (Yuan

et al. 2016; Brown et al. 2016; Bellomo et al. 2016). Do

these different mechanisms make up one coherent mode

of variability or are they distinct mechanisms operat-

ing on different time scales and in different geographic

locations?

Atlantic temperature variability is traditionally char-

acterized by the North Atlantic SST index (NASSTI),

the spatially averaged SST anomaly over the North

Atlantic basin (08–608N, 08–808W), with the influence

of global warming removed through linear detrendingCorresponding author: Robert C. Jnglin Wills, rcwills@uw.edu
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(Enfield et al. 2001) or by subtracting the global-mean

SST (Trenberth and Shea 2006). NASSTI appears to

vary on multidecadal time scales, and is thus often low-

pass filtered and referred to as the Atlantic multidecadal

oscillation (AMO). Recent work has shown that the

amplitude and phase of the AMO are sensitive to the

method of detrending (Ting et al. 2009; Frankcombe et al.

2015). Moreover, the choice of averaging region is

problematic, as no physical mechanism has been pos-

tulated that dictates that multidecadal SST variability

should be coherent between the equator and 608N. The

use of the current NASSTI/AMO index is based solely

on the history of its introduction and, as we will show,

mixes multidecadal temperature variability with other

forms of temperature variability on shorter time scales.

Here, we seek to determine the mechanisms driving

multidecadal variability of Atlantic SSTs without a pri-

ori assumptions about its spatial or temporal structure.

To do so, we use low-frequency component analysis

(LFCA), introduced by Wills et al. (2018; cf. Schneider

and Held 2001), an objective method to find spatial

anomaly patterns with the highest ratio of low-frequency

to total variance. We apply this method to Atlantic SST

anomalies in observations and in unforced preindustrial

control simulations with comprehensive climate models.

We use the results to identify the physical mechanisms

that are important for unforced Atlantic multidecadal

variability in climate models and develop a mechanistic

understanding of the AMO. While a number of other

studies have investigated the mechanisms of Atlantic

multidecadal variability based on its manifestations on

the subsurface ocean and sea level (Zhang 2008, 2010;

Buckley et al. 2014; Zhang and Zhang 2015; Yan et al.

2018), we focus in particular on the surface manifes-

tation of Atlantic multidecadal variability (i.e., the

AMO) to address the large body of literature taking

this perspective.

Section 2 describes the analysis methods, datasets, and

climate model simulations used. Section 3 describes the

low-frequency components of Atlantic SST variations in

observations and climate models. In section 4, we dis-

cuss how LFCA provides insight into the mechanisms

of unforced Atlantic multidecadal variability in climate

models, and in particular how these mechanisms dif-

fer from the mechanisms of variability at shorter time

scales. In section 5, we compare different indices of

Atlantic multidecadal variability and the AMO. Sec-

tion 6 discusses how these results compare to recent

studies using slab-ocean models. The key findings are

summarized in section 7. In the appendixes, we ex-

plore how AMO variability differs across models and

discuss the next-lowest-frequency mode of Atlantic

SST variability.

2. Methods

a. LFCA

Low-frequency component analysis isolates the low-

frequency variability in a dataset by finding low-frequency

patterns (LFPs) that are linear combinations of the leading

empirical orthogonal functions (EOFs) and sorting themby

the ratio of low-frequency to total variance in their corre-

sponding time series, called low-frequency components

(LFCs).We define low-frequency variance based on a low-

pass filter with a cutoff at 10 years. This type of analysis can

be used to find the spatial pattern that best discriminates

between some type of variance representing a ‘‘signal’’

compared to ‘‘noise’’ that exists within internal variability

or between realizations and has been variously called op-

timal filtering or signal-to-noise maximizing EOF analysis

(Allen and Smith 1997; Venzke et al. 1999; Schneider and

Griffies 1999; Schneider and Held 2001; Ting et al. 2009).

These methods take advantage of any spatial structure of

covariance in the ‘‘noise’’ to optimally filter it out.

To ensure that the LFPs correspond to variability that

actually occurs within the dataset, the LFPs are required

to be linear combinations of theN leading EOFs. For an

n3 p spatiotemporal data matrix Xwith zero time mean

(e.g., n time steps of SST anomalies at p grid points), we

compute the EOFs ak, which are the eigenvectors of the

sample covariance matrix of the unfiltered data,

C5 (n2 1)21XTX . (1)

The EOFs are normalized kakk5 1 such that the cor-

responding eigenvalues s2
k 5 aTkCak give the variance

associated with the kth EOF and the principal compo-

nents PCk 5s21
k Xak have unit variance. The data matrix

X is weighted by the square root of grid cell area such

that the covariance is area weighted.

We look for linear combinations of the first N EOFs,
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is maximized when the data matrix is projected onto

them. The coefficient vectors ek are normalized such

that kekk5 1. Here, eX is the pointwise low-pass filtered

spatiotemporal data matrix and eC is the covariance

matrix of the low-pass filtered data,

eC5 (n2 1)21eXTeX . (4)
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Weusea linearLanczosfilterwitha10-yr low-pass cutoff and

reflected boundary conditions to focus on variability at de-

cadal and longer time scales (i.e., multidecadal variability).

The normalization factors s21
k in (2) ensure that the

covariance in the denominator of (3) is equal to 1. Using

(2), (3), and the definition of a principal component, we

find that the coefficient vectors ek are eigenvectors of the

covariance (cov) matrix R of the firstN low-pass filtered

principal components,

R
ij
5 cov(fPC

i
, fPC

j
). (5)

The matrix R has N eigenvectors, Rek 5 rkek. The ei-

genvalues rk give the fraction of the variance in the kth

mode that occurs at low frequencies. The projection of

the unfiltered data onto the linear combination vectors

uk gives the low-frequency components,

LFC
k
5Xu

k
. (6)

The regression of the unfiltered data onto the kth LFC

gives the kth LFP,
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The LFCs are sorted by their variance ratio rk such that

the leading LFCs describe modes of low-frequency variabil-

ity. The LFPs and LFCs are analogous to EOFs and prin-

cipal components, respectively, in that the LFCs have unit

variance and the LFPs describe the anomaly pattern asso-

ciated with a one standard deviation anomaly in the LFC.

LFCA has two parameters, the number of EOFs in-

cluded N and the low-pass cutoff T (or more generally

the properties of the filter used). Our results are in-

sensitive to the exact values ofN and T used, at least for

N between 10 and 50 and for T. 5 years. We have

limited our analysis of observed SSTs toN, 50, because

for 50 or more EOFs, the number of spatial degrees of

freedom becomes comparable to the number of tem-

poral degrees of freedom in the 10-yr low-pass filtered

data, even when including observations back to 1900. A

detailed discussion of the robustness of LFCA to the

choice of parameters can be found in Wills et al. (2018).

While filtering is used to define the linear combination

of EOFs, the resulting LFCs are unfiltered and can thus

display seasonal variations and rapid transitions. Unlike

principal component analysis of low-pass filtered data,

LFCA uses information about spatiotemporal covari-

ance at all time scales (e.g., in computing the EOFs ak).

LFCA thus provides a method to isolate the regions and

physical mechanisms important at long time scales while

avoiding the issues with attributing lead–lag relationships

based on filtered data [as discussed in Cane et al. (2017)].

b. Datasets and climate model simulations

We analyze observed SSTs over the period 1900–2016

from the NOAAExtended Reconstructed SST (ERSST)

dataset, version 3b (ERSST.v3b; Smith et al. 2008), and

output from preindustrial control simulations of 26 fully

coupled climate models from phase 5 of the Coupled

Model Intercomparison Project (CMIP5; Taylor et al.

2012). External forcing from greenhouse gases, aerosols,

ozone, and solar variability is fixed at preindustrial levels

throughout the simulations. We use preindustrial control

simulations to focus on understanding the mechanisms of

unforced variability in Atlantic SSTs without mixing in

information about forced changes, for which the mecha-

nisms are likely different.We include 500 years from each

model’s control simulation, shown in Table 1. We use

model output of surface temperature (TS), sea level

pressure (SLP), ocean meridional overturning stream-

function (MOC), and sensible-heat, latent-heat, and ra-

diative fluxes contributing to the net surface heat flux

(SHF). MOC data (including both msftmyz and msftyyz

in the standard CMIP5 notation) are only available for a

subset of the models (16 in total), as noted in Table 1.

BCC-CSM1.1 and INM-CM4.0 have missing SHF data

and are omitted from the analysis of net surface heat

fluxes. We remove quadratic trends from all outputs of

the preindustrial control simulations in order to remove

the effects of model drift. However, trends are included

in the ERSST analysis: Linear trends are removed be-

fore filtering but then added back into the data matrix eX
such that linear trends are included in the definition of

low-frequency variance.

c. Data processing for CMIP5 ensemble

All model output is interpolated to a common analysis

grid. For surface fields, we use the 28 grid of ERSST. For

TABLE 1. CMIP5 preindustrial control simulations used in this

study and the 500 model years used from each. Models with MOC

data are denoted with an asterisk.

Model Model years Model Model years

ACCESS1.0* 300–799 GFDL-ESM2M* 1–500

ACCESS1.3* 250–749 GISS-E2-H 2450–2949

BCC-CSM1.1 1–500 GISS-E2-R* 4031–4530

BNU-ESM 1509–2008 HadGEM2-ES 1935–2434

CanESM2* 2511–3010 INM-CM4.0* 1850–2349

CCSM4* 801–1300 IPSL-CM5A 2300–2799

CESM1-BGC* 101–600 MIROC5* 2370–2869

CMCC-CMS 3684–4183 MIROC-ESM 1930–2429

CNRM-CM5* 2200–2699 MPI-ESM-LR* 2350–2849

CSIRO-Mk3.6.0 1–500 MPI-ESM-MR* 2350–2849

FGOALS-s2 1851–2350 MPI-ESM-P* 2506–3005

GFDL-CM3* 1–500 MRI-CGCM3* 1851–2350

GFDL-ESM2G 1–500 NorESM1-M* 701–1200
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MOC, we use a 18 grid in latitude and 52 vertical levels

extending to 5250-m depth. Rather than interpolating

model output of SST from the irregular ocean grids to the

28 analysis grid, we useTS, which is output on eachmodel’s

atmospheric grid. To obtain SST data from TS, we set all

temperatures below the freezing point of seawater (where

sea ice is present) to the freezing point. After interpola-

tion, we exclude all grid points that are over land.

To apply LFCA to an ensemble of climate model sim-

ulations, we concatenate the individual model monthly

SST anomaly matrices Xi into one ensemble anomaly

matrix,

X
E
5 [XT

1 XT
2 � � � XT

nE
]
T
. (8)

The climatological seasonal cycle is subtracted from each

datamatrixXi separately such that we remove differences

in climatology betweenmodels. Here, nE is the number of

models in the CMIP5 preindustrial ensemble. In low-pass

filtering the ensemble datamatrixXE, we do not filter over

discontinuities betweenmodels; the data from eachmodel

are filtered separately then concatenated,

eX
E
5 [eX

1

T eX
2

T � � � eX
nE

T
]
T
. (9)

LFCA is then applied to find the SST anomaly pattern

that maximizes the ratio of low-frequency to total vari-

ance over the entire ensemble.

When computing lead–lag regressions and correla-

tions with the corresponding SST indices, significance

levels are computed by analyzing the lag-0 regressions

or correlations with 500 phase randomized samples of

each SST index, following Ebisuzaki (1997). Phase ran-

domization is applied to the concatenated multimodel

index such that it also randomizes phase across different

models.

3. Multidecadal variability of the subpolar North
Atlantic

The two leading LFPs/LFCs of monthly Atlantic SST

anomalies (from the climatological seasonal cycle) be-

tween 408S and 758N in the observations (ERSST; Smith

et al. 2008), over the period 1900–2016, correspond

to basinwide long-term warming and subpolar North

Atlantic multidecadal variability (Fig. 1). We retain 25

EOFs in the LFCA to capture 85% of the total Atlantic

SST variance. LFC 1 is highly correlated (0.94) with

global-mean SST and thus represents the impact of

global warming on Atlantic SSTs. LFP 2 shows large-

scale warming of the NorthAtlantic, concentrated in the

North Atlantic subpolar gyre. Its time series (LFC 2;

Fig. 1c) shows a pronounced warm phase from 1924 to

1965 followed by a pronounced cold phase from 1966 to

1997 and a weaker warm phase since 1998. This agrees

well with themultidecadal shifts in NASSTI (correlation

of 0.74, coherence greater than 0.85 for periods greater

than 12 years), but LFC 2 has a much larger ratio of low-

frequency to total variance than does NASSTI (r5 0:76

vs 0.55). While the temperature patterns associated with

LFC 2 and NASSTI are similar in the subpolar gyre

(Figs. 1b,d), LFC 2 has a much weaker relationship with

tropical Atlantic SSTs. Together, these results suggest

that the AMO is confined to the subpolar NorthAtlantic,

while the tropical Atlantic varies primarily on shorter

(intradecadal) time scales, adding noise to the traditional

NASSTI/AMO definition.

LFP/LFC 2 is similar to proposed SST-based indices

of AMOC (Rahmstorf et al. 2015; Caesar et al. 2018),

and similarly shows a negative trend over the twentieth

century (20:6 standard deviations per century). How-

ever, the magnitude of negative trend in LFC 2 is sen-

sitive to the time period analyzed. Other aspects of the

results in Fig. 1 are robust across different choices of

time periods and can be recovered by transferring trends

between LFCs 1 and 2, as long as we include data back to

1960. [We also obtain similar results from an analysis of

theHadley Centre Sea Ice and Sea Surface Temperature

dataset, version 1.1 (HadISSTv1.1; Rayner et al. 2003);

LFCs 1 and 2 of HadISSTv1.1 show aspects of the long-

term SST trends, and LFC 3 has a 0.75 correlation with

LFC 2 of ERSST.] Time periods shorter than about 60

years contain less than one full cycle of AMO variability

such that this statistical analysis mixes the AMOwith the

secular trend. Statistical analysis of SST anomalies can-

not by itself distinguish the relative influences of external

forcing and internal variability on observed Atlantic SST

variability. Distinguishing forced from unforced compo-

nents in observations requires a better understanding of

the physical mechanisms of AMO variability, which we

will develop (based on coupled climate models) in the

next section.

The observational record of ocean circulation

(Cunningham et al. 2007) and air–sea heat fluxes (Chou

et al. 2003; Yu andWeller 2007; Berry and Kent 2009) is

too short to constrain mechanisms of variability on

multidecadal time scales, particularly since lead–lag re-

lationships with the AMO are dominated by the two

major AMO transitions in the observational record

during 1966–68 and 1995–98. We thus turn our focus to

numerical simulations with fully coupled atmosphere–

ocean models. To identify mechanisms of unforced

variability, we analyze CMIP5 preindustrial con-

trol simulations, where greenhouse gases and aerosols

are kept fixed at preindustrial levels. We include 500

years from each of 26 different models such that we
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analyze a total of 13 000 years of unforced variability

(Table 1). To reduce the dimensionality of this large

dataset, we compute the leading 50 EOFs of monthly

Atlantic SST anomalies (from each model’s climato-

logical seasonal cycle with quadratic trends removed)

across the entire multimodel ensemble (capturing 72%

of the total variance) and input these to the LFCA. By

including 50 EOFs, we include information about vari-

ability at small spatial scales (e.g., ocean frontal zones)

that could not be captured by a large-scale average such

as NASSTI. Rather than trying to assess which models

best simulate Atlantic multidecadal variability, we focus

on multimodel composites that illustrate the represen-

tative mechanisms within the ensemble.

The leading LFP of monthly Atlantic SST anomalies

(between 408S and 758N) in the CMIP5 preindustrial

ensemble shows warming throughout the high-latitude

North Atlantic (Fig. 2a), particularly at latitudes greater

than 408N, with the largest warming within the subpolar

gyre. The corresponding LFC has considerable persis-

tence out to decadal time scales (inset in Fig. 2a). This

bears qualitative similarity with LFCA applied to indi-

vidual models (appendix A), where each model em-

phasizes warming in a slightly different region of the

subpolar North Atlantic. Compared to the pattern of

low-frequency variability in ERSST (Fig. 1b), the mul-

timodel composite SST pattern (Fig. 2a) has larger SST

anomalies in the Arctic and a weaker connection with

Southern Hemisphere temperatures. Averaged over the

full Atlantic domain, the pattern correlation between

them is 0.64, higher than for any individual model’s SST

pattern associated with LFC 1 variability. This suggests

that themultimodel composite is a better representation

of the real world than any individual model. The decadal

FIG. 1. Atlantic low-frequency components (LFCs) in ERSST.v3b. The (a) first and (b) second low-frequency patterns (LFPs) of Atlantic

SST anomalies over the historical period from the ERSST.v3b dataset, using low-frequency component analysis (LFCA) with 25 EOFs

retained and a 10-yr low-pass cutoff. (c) The first and second LFCs of Atlantic SST, which correspond to the spatial anomaly patterns in

(a) and (b). TheNorthAtlantic SST index (NASSTI), based on linearly detrended SSTs, is shown for comparison. Dashed vertical lines show

years with major AMO transitions. Black lines show each index filtered with a 10-yr low-pass filter; r is the ratio of low-frequency (greater

than 10 years) to total variance. Note that using global-mean SST to remove the global warming signal from NASSTI further reduces its

variance ratio r to 0.51 without qualitatively changing its SST pattern. (d) Regression of Atlantic SST anomalies on NASSTI.
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persistence is somewhat smaller in the CMIP5 pre-

industrial ensemble (LFC 1 autocorrelation e-folding

time of 4 years) than in ERSST (LFC 2 autocorrela-

tion e-folding time of 10.5 years). This corresponds to a

reduced ratio of low-frequency to total variance in

CMIP5 compared to ERSST (r5 0:60 vs 0.76) and

could indicate either that Atlantic multidecadal vari-

ability operates on shorter time scales in models than in

observations or that external forcing contributed to the

observed variations of North Atlantic SSTs over the

twentieth century.

For comparison, the SST pattern associated with

the traditional NASSTI/AMO definition shows a

horseshoe-like warming pattern within the 08–608N lat-

itude range used to define it (Fig. 2b) and has markedly

less persistence, similar to our findings in the observa-

tional SST data (Fig. 1). NASSTI explains 26% more of

the total Atlantic SST variance than LFC 1, but 59% less

of the variance on decadal and longer time scales, owing

to its lower ratio of low-frequency to total variance.

LFC 1 and NASSTI are both associated with sea ice loss

and warming over Europe, eastern North America,

and northwestern Africa, giving surface temperature

anomalies that are locally larger than the SST anomalies

(not shown; cf. Sutton and Hodson 2005; Mahajan et al.

2011). The model-derived LFC 1 and NASSTI give

two representations of Atlantic SST variability that can

be used to give two perspectives on the associated

mechanisms, focusing in particular on how the mech-

anisms differ between time scales. Because these in-

dices capture some of the samemultidecadal variability

(see section 5), we will refer to them both as indices of

the AMO.

The second LFP of monthly Atlantic SST anomalies in

the preindustrial ensemble shows a tripolar SST anomaly

between the Gulf Stream, the subpolar gyre, and the

Norwegian seas (see appendix B). The corresponding

LFC varies on 8–20-yr time scales. In appendix B, we

discuss how it could be related to subpolar gyre variability

in response towind stress forcing [as discussed in previous

FIG. 2. Comparison of LFC 1 and NASSTI in coupled climate models. (a),(b) Spatial pattern of SST anomalies associated with a one

standard deviation anomaly in LFC 1 and NASSTI, respectively, computed over the CMIP5 preindustrial ensemble; the insets show the

autocorrelation of the associated indices. (c),(d) Regression of net sea surface heat flux anomalies onto LFC 1 and NASSTI, respectively.

Positive values denote an anomalous heat flux from the ocean into the atmosphere. Insets show the lead–lag regression of heat flux

anomalies (averaged over the box in the corresponding figure) on each index. Lag-0 is the time where the SST pattern is maximum;

positive lags indicate heat flux anomalies that lag the index. Dashed gray lines give the 95% significance levels based on phase ran-

domization. Averaging is done over all 26 CMIP5 models used in this study; see Table 1.
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work by Curry and McCartney (2001) and Sun et al.

(2015)]. Neither of the leading LFPs are sensitive to the

domain or LFCA parameters used, and our analysis is

broadly consistent with an analogous analyses of annual

or seasonal SST anomalies.1 Moreover, we can find sim-

ilar indices by applying LFCA to global, rather than At-

lantic, SST anomalies (not shown).

4. Mechanisms of ocean–atmosphere dynamic
coupling within the AMO

We use lead–lag relationships between air–sea heat

flux anomalies (including sensible heat, latent heat, and

radiative components) and SST anomalies to determine

whether SST variability is driven by direct atmospheric

forcing or by ocean circulation changes (which can result

either from internal ocean variability or from prior at-

mospheric wind and buoyancy forcing). The lag-0 re-

gressions of air–sea heat flux anomalies onto LFC 1 and

NASSTI show striking differences (Figs. 2c,d). Positive

LFC 1 anomalies are associated with anomalous net

heat fluxes from the ocean into the atmosphere in the

Labrador Sea, subpolar gyre, and Barents–Kara Sea

(Fig. 2c)—all regions of positive SST anomalies.2 This

suggests that these SST anomalies are maintained by

ocean circulation changes and anomalous ocean heat

transport.

Averaging heat flux anomalies over the subpolar

North Atlantic, we find that the ocean is losing energy to

the atmosphere for more than 10 years surrounding a

maximum in LFC 1 (inset in Fig. 2c). This is only pos-

sible if anomalous ocean heat flux convergence sustains

the warm temperatures, because these surface heat flux

anomalies would otherwise act to cool the ocean surface.

The reduction in upward heat fluxes a few years before

themaximumwarming and subsequent heat flux spike in

the year following indicates that atmospheric heat fluxes

contribute some additional warming on shorter time

scales. Specifically, there is a region of the northeast

Atlantic, extending from the southern coast of Iceland

toward Great Britain, where the anomalous net surface

heat flux is into the ocean during and in the years pre-

ceding a warm event (Figs. 2c, 3d).

In contrast, NASSTI anomalies are associated with

anomalous heat fluxes from the atmosphere into the ocean

throughout much of the 08–608N latitude range (Fig. 2d).

Averaged over these latitudes, heat flux anomalies are into

the ocean immediately before a temperature maximum

and out of the ocean immediately following, consistent

with direct atmospheric forcing of this variability. The

lead–lag relationships of LFC 1 and NASSTI with air–sea

heat flux anomalies differ partly because these indices

identify heat flux variability in different regions, but the

lead–lag relationships remain qualitatively different even

if consistent averaging regions are used (Fig. 3). Only

LFC1 shows anomalous heat loss from theocean through-

out warm events, an indication that SST anomalies are

sustained by anomalous ocean heat flux convergence.

To investigate the ocean circulation changes asso-

ciated with these two types of AMO-like variability,

we regress monthly anomalies of the AMOC stream-

function onto LFC 1 and NASSTI. LFC 1 anomalies

are associated with a maximum AMOC strengthening

of 0.41 Sv (1 Sv [ 106m3 s21) per standard deviation

(Fig. 4a). This AMOC anomaly extends across the

equator and reinforces the climatological AMOC

streamfunction. The AMOC anomaly associated with

NASSTI looks markedly different, with opposite

changes in the NorthAtlantic subtropical and subpolar

gyres (Fig. 4b), indicating adjustment of the ocean

gyres in response to wind and/or buoyancy forcing.

Both LFC 1 and NASSTI show an AMOC maximum

2–3 years before the maximum North Atlantic warming

(Figs. 5a,c). Combined with the necessity to invoke ocean

heat flux convergence to explain surface heat flux anom-

alies (Fig. 2c), this suggests that AMOC plays a causal

role in AMO variability. The relationship with AMOC is

stronger for LFC 1; the NASSTI relationship is obscured

by a short-lived peak at lag-0 (Fig. 5c), which corresponds

to a change in the ocean gyres rather than an increase in

ocean overturning. In essence, NASSTI is mixing together

information about any variability that leads to warming in

the North Atlantic, whether that is strengthened AMOC

or a net heat flux from the atmosphere to the ocean due

to stochastic atmospheric variability (the latter of which

also leads to a change in the ocean gyres).

The regression of SLP anomalies also differs be-

tween LFC 1 and NASSTI. The lag-0 regression of SLP

anomalies onto LFC 1 shows a low pressure anomaly cen-

tered over the region of positive subpolar SST anomalies

(Fig. 4c). This atmospheric circulation anomaly acts to

weaken the trade winds and communicate the warming

into the tropical Atlantic (cf. Yuan et al. 2016; Brown

1 The area-weighted pattern correlation between LFP 1 of an-

nual SST anomalies (not shown) and LFP 1 of monthly SST

anomalies is 0.98 for analysis of Atlantic SST anomalies in the

CMIP5 preindustrial control ensemble.
2We describe the AMO mechanisms focusing on the warm

phase for clarity of explanation, but since this analysis is based on

regressions on the LFC 1 index, all mechanisms apply also with

opposite sign. In this way, ocean heat flux convergence contributes

to the variance of SST. Note, however, that because the SST ten-

dency due to ocean heat flux convergence is opposite in sign to the

tendency due to surface heat fluxes, ocean heat flux convergence

does not necessarily increase the total variance of SST compared

to a slab-ocean model.
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et al. 2016). This basinwide low pressure anomaly de-

velops only after AMOC has reached its maximum

strength (Fig. 6), suggesting that it is a response to

AMOC-driven warming of the North Atlantic, either

directly or indirectly. The circulation anomaly fits with

what is expected from a direct atmospheric response to

extratropical thermal forcing (Hoskins and Karoly 1981).

The lag-0 regression of SLP anomalies on NASSTI

shows a low pressure anomaly over the subtropical gyre

and weak high pressure anomaly over the subpolar gyre

(Fig. 4d). The weaker subtropical anticyclone weakens

the trade winds, reducing evaporative cooling of the

subtropics, and helping to warm subtropical SSTs (Figs.

2b and 2d). Since this anomaly opposes the climatological

atmospheric circulation, it acts to weaken the ocean

gyres, leading to the AMOC streamfunction anomaly

shown in Fig. 4b.

Variability of the North Atlantic atmospheric circula-

tion can be characterized by the North Atlantic Oscilla-

tion (NAO; Hurrell 1995). Both LFC 1 and NASSTI

show positive NAO anomalies from 12 to 2 years before

peak warming (Figs. 5b,d). This is consistent with a pro-

posed mechanism where positive NAO anomalies act to

bring cold dry air off the North American continent,

enhancing turbulent heat fluxes from the ocean into the

atmosphere, stimulating deep-water formation in the

Labrador Sea, and strengthening AMOC (Fig. 6; years

25 to 22; Sun et al. 2015; Delworth and Zeng 2016;

Delworth et al. 2016, 2017). In the absence of an ocean

circulation response, the heat flux anomalies associated

FIG. 3. Lead–lag regressions of regional air–sea heat flux anomalies on AMO indices. The (a) autocorrelation of and (b)–(d) lead–lag

regression of heat flux anomalies onto LFC 1, NASSTI, 10-yr low-pass filtered NASSTI, and the subpolar (408–608N, 208–608W) SST

index. Heat flux anomalies are averaged over (b) the subpolar box shown in Fig. 2c, (c) the full North Atlantic box shown in Fig. 2d, and

(d) the northeastAtlantic (308–658N, 08–308W). The heat flux regressions in the top two rows of (b) and (c) break up the differences in heat

flux regressions shown in Figs. 2c and 2d into differences in averaging region and differences in SST index. Heat fluxes are in units of watts

per squaremeter per standard deviation of the associated index. Lag-0 is the timewhere the SSTpattern ismaximum; positive lags indicate

heat flux anomalies that lag the index. Dashed gray lines give the 95% significance levels based on phase randomization.
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with a positive NAO anomaly would act to cool the

ocean; they can only lead to warming of the North At-

lantic if anomalous ocean heat flux convergence over-

whelms the atmosphere-driven cooling.

NASSTI additionally shows a negativeNAO anomaly

in the year preceding and the year of maximumwarming

(Figs. 4d, 5d). This negative NAO anomaly reduces heat

fluxes from the ocean into the atmosphere leading to

basinwide warming, but also contributing to the weak-

ening of AMOC. LFC 1 shows muted negative NAO

anomalies around lag-0, because the associated circu-

lation anomaly is not well aligned with the NAO SLP

pattern (Figs. 4c, 6; from years 21 to 1). This weakly

negative NAO anomaly persists for ;25 years (not

shown) and eventually leads to a phase reversal of the

AMO after 20–45 years (95% confidence interval), but

correlations at these lag times are not statistically sig-

nificant in general, so we do not discuss them further.

Over the course of a subpolar North Atlantic warm

event (as characterized by LFC 1), the atmospheric

circulation evolves from a positive NAO anomaly that

helps to strengthen AMOC to a basin-scale low pressure

anomaly that helps to communicate the warming into

the subtropics (Fig. 6). The interplay between NAO and

AMOC illustrates the role of ocean–atmosphere dy-

namic coupling in AMO variability.

A summary schematic of the physics of the AMO in

coupled climate models, as illuminated by LFCA, is shown

in Fig. 7. In the growth phase of an AMO warm event

(years 212 to 22; Fig. 7a), strong zonal winds over the

North Atlantic (e.g., associated with stochastic NAO vari-

ability) lead to anomalous heat loss from the Labrador Sea,

helping to trigger deep-water formation and strengthen

AMOC. Because AMOC takes several years to respond

to NAO heat flux anomalies (Delworth and Zeng 2016),

even white noise NAO forcing would result in red noise

AMOC variability extending out to multidecadal time

scales (Hasselmann 1976). Ocean heat transport associ-

ated with AMOC overcompensates for the initial cooling

and leads to warming of the subpolar North Atlantic.

During the peak phase of an AMO warm event

(years 22 to 0; Fig. 7b), AMOC reaches its maximum

strength and a low pressure cell forms over the subpolar

gyre, helping to extend the warming to the east and

south through warm air advection and reduced evapo-

rative cooling. Heat flux anomalies into the ocean in the

eastern North Atlantic (308–658N, 08–308W; Figs. 3d, 2c)

add buoyancy and contribute to subsequent AMOC

weakening, helping to terminate the AMOC-driven

warm event. The atmospheric response to the AMOC

maximum simultaneously contributes to further North

Atlantic warming and to the weakening of AMOC such

that the maximum warming lags the AMOC maximum

by two years.

Within a year of the maximum warming, AMOC

and the North Atlantic atmospheric circulation have

FIG. 4. Oceanic and atmospheric circulation anomalies associated with AMO in coupled climate models. Regression of AMOC stream-

function anomalies onto (a) LFC 1 and (b) NASSTI. Black contours show the climatological AMOC streamfunction (contour interval: 2 Sv).

Regression of SLP anomalies onto (c) LFC 1 and (d) NASSTI. Averaging is done over the 16 models with AMOC data for (a) and (b) and all

26 models for (c) and (d); see Table 1. Circulation anomalies shown correspond to a one standard deviation anomaly in the respective index.
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returned to near their climatologies. The decay phase

(years 0 to 10; Fig. 7c) is characterized by warm tem-

peratures decaying away through anomalous air–sea

heat fluxes. This schematic synthesizes mechanistic un-

derstanding of the AMO growth phase (Delworth and

Zeng 2016) with mechanistic understanding of AMO’s

influence on the tropical Atlantic (Yuan et al. 2016;

Brown et al. 2016) and elucidates the role of the atmo-

spheric circulation response in driving buoyancy gain in

the North Atlantic current, which helps to terminate

AMO warm events. Note that these mechanisms also

apply to AMO cold events (with opposite sign).

The NAO index is used for this mechanistic picture

not because it provides the ideal AMOC perturbation

but because it is a canonical index that explains a large

fraction of the total atmospheric circulation variability

over theNorthAtlantic (Hurrell 1995). Any perturbation

that leads to heat loss from the subpolar North Atlantic

should also spin up AMOC and lead to a delayed sub-

polar warming. Future work should consider how these

mechanisms differ when Labrador Sea heat fluxes are

driven by anthropogenic radiative forcing rather than

stochastic atmospheric variability, as this could help to

disentangle internal variability from forced responses in

observed Atlantic temperatures.

5. Indices of Atlantic multidecadal variability

LFC 1 and NASSTI give two different statistical repre-

sentations of processes contributing to multidecadal vari-

ability of Atlantic SSTs. LFC 1, by definition, has a higher

ratio of low-frequency (i.e., multidecadal) to total variance

than NASSTI. As a result, it has at least twice as much

variance at 30–200-yr time scales and half as much at

2–6-yr time scales (Fig. 8a). Neither index has any strong

spectral peaks in the multimodel mean, besides the peak

at annual time scales in LFC 1, which is a consequence

of low-frequency AMOC-driven SST anomalies having

the largest manifestation in wintertime temperatures.

Despite their differences, LFC 1 is relatively coherent with

NASSTI at low frequencies (Fig. 8b), meaning that they

are capturing much of the same multidecadal variability.

This coherence at low frequencies helps to explain why

NASSTI still captures the lead–lag relationships with

NAO and AMOC on long time scales (Figs. 5c,d).

On the time scales where they are coherent, LFC 1

leads NASSTI by about one year (Fig. 8c), suggesting

that AMOC-driven low-frequency variability of the

subpolar North Atlantic can lead to basinwide SST

anomalies in the following year, likely because of its

impact on the subtropical atmospheric circulation and

subtropical low clouds (Yuan et al. 2016; Brown et al.

2016). In fact, at lead times of 1–10 years, LFC1 is a better

predictor of NASSTI than NASSTI itself (Fig. 8d). This

makes a strong case that LFC 1 would be a useful index

for decadal predictions. It is a crucial point that processes

in the subpolar North Atlantic lead to multidecadal var-

iability throughout the Atlantic, since many of the im-

pacts of the AMO are associated with SST anomalies at

lower latitudes (Ruprich-Robert et al. 2017).

FIG. 5. Lead–lag relationships between AMO, AMOC, and

NAO in coupled climate models. Lead–lag relationships be-

tween (left) AMOC and indices of Atlantic SST variability and

(right) NAO and indices of Atlantic SST variability. AMOC is de-

fined as the monthly AMOC streamfunction maximum north

of the equator and below 500-m depth. AMOC anomalies (from

the climatological seasonal cycle) are regressed onto monthly

anomalies in the SST-based indices. Note that in the regression

against NASSTI, the AMOC index mixes in gyre changes such as

shown in Fig. 4b, which are responsible for the short-lived spike

at lag-0. NAO is defined as the difference in the normalized SLP

anomaly between Reykjavik and Lisbon (Hurrell 1995). The

cross correlations between the SST-based indices and the NAO

are computed for monthly anomalies, then averaged over DJF

(based on the month of the SLP field). Dashed gray lines give the

95% significance levels based on phase randomization. Note that

the correlations can be increased simply by low-pass filtering the

NAO and AMO indices, but this removes some of the rich tem-

poral information near lag-0 without increasing the statistical

significance.
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An alternate index of Atlantic variability, based on

the monthly SST anomaly averaged over the subpolar

North Atlantic (408–608N, 208–608W; Fig. 9a), also ob-

scures the role of AMOC in AMO variability by mixing

it with (high frequency) atmosphere-driven warming of

the subpolar gyre. This reduces its ratio of low-frequency

to total variance (such that it is equal to that of NASSTI),

causes it to show a correlation with anomalous heat

fluxes into the ocean at lag-0 (Fig. 9b), and obscures its

covariance with AMOC (Fig. 9c). The regression of

SLP onto the subpolar SST index shows a negative NAO

anomaly (Fig. 9d). This is associated with heat gain in the

Labrador Sea and the eastern North Atlantic (Fig. 9b),

which contributes to AMOCweakening. Variability of

the subpolar SST index is associated with atmospheric

variability that drives local warming through air–sea

fluxes, but these heat flux anomalies act to weaken

AMOC, resulting in short-lived warm events. This is

evident in the rapid decrease in AMOC following the

strong negative NAO anomaly (Figs. 5g,h). Even though

the subpolar SST index focuses on the same region of SST

variability as LFC 1, it obscures the mechanisms that are

important on decadal and longer time scales. This illus-

trates how LFCA goes beyond simply identifying the

relevant region of Atlantic multidecadal variability by

providing an improved AMO index that is useful in di-

agnosing the associated physical mechanisms.

Analyzing physical mechanisms based on a 10-yr low-

pass filteredNASSTI, similar to what has been done by a

number of other studies (Brown et al. 2016; Zhang et al.

2016; O’Reilly et al. 2016), recovers some of the con-

clusions as we have with LFCA (compare Fig. 10 with

Figs. 2 and 4; Fig. 5e with Fig. 5a; and Fig. 5f with

Fig. 5b), but makes strong assumptions about the spatial

pattern of AMO SST anomalies and shows a different

relationship between atmospheric circulations and the

AMO. The SST pattern associated with the low-pass

filtered NASSTI resembles that of NASSTI (by con-

struction), but with weight shifted toward the subpolar

part of the pattern (Fig. 10a, cf. Fig. 2b). The basinwide

low pressure anomaly that is characteristic of AMOC-

driven subpolar warming does not show up in the SLP

FIG. 6. AMO evolution. Regressions of SST (shading) and SLP (contours; contour interval 5 Pa; dashed negative) on LFC 1 for various

lead and lag times. Year 0 is the year ofmaximumwarming as characterized by LFC 1.We focus on the 10 years surrounding amaximum in

LFC 1, because the statistical significance of these regressions is small for longer lead–lag times (i.e., even though LFC 1 evolves on

multidecadal time scales, it is only predictable on decadal time scales).
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regression on the low-pass filtered NASSTI because the

filtering mixes together the positive NAO anomaly that

precedes subpolar warming with the basinwide low pres-

sure that follows, resulting in a weak SLP anomaly at

lag-0 (Fig. 10d, cf. Fig. 4c). Similarly, the filtering mixes

together heat flux anomalies that precede the warming

with those that follow such that it is difficult to distin-

guish atmosphere-driven and ocean-driven heat fluxes

(Figs. 10b, 3). The advantage of LFCA in this context is

that it highlights the regions and physical mechanisms

relevant to multidecadal variability without explicitly low-

pass filtering the data, which can mix together processes

that precede warm events with those that follow (Cane

et al. 2017), making inferences about causality difficult.

Other studies have used low-pass filtered subpolar

SST anomalies (Zhang 2017) or low-pass filtered AMOC

streamfunction anomalies (Yan et al. 2018) as indices of

Atlantic multidecadal variability. Such indices recover

many of the same mechanistic insights as we have with

LFCA but remove all information about subdecadal

variations. LFCA uses information about the spatio-

temporal covariance of subdecadal variability in order to

optimally filter it out, obtaining amonthly resolved index

of multidecadal variability. Such an index is useful for

determining the impact of subdecadal variations on

multidecadal SST variability (e.g., variations in theNAO

or in northeast Atlantic heat fluxes; Fig. 5b and Fig. 3,

respectively). That is not to say this is the only way to get

this information. For example, Guan and Nigam (2009)

have separated off a subpolar component of the AMO

using extended EOF analysis. However, for the purposes

of defining indices of multidecadal variability, one clear

advantage of LFCA is that it identifies the anomaly

pattern with the highest possible ratio of multidecadal

‘‘signal’’ to interdecadal ‘‘noise.’’

6. Slab-ocean models

Our results help to reconcile studies suggesting that

the AMO in slab-ocean models (in which ocean circu-

lation cannot vary) is similar to that in comprehensive

models and observations (Clement et al. 2015; Cane

et al. 2017), with literature showing the importance of

AMOC variability for AMO (Delworth et al. 1993;

Delworth and Mann 2000; Latif et al. 2004; Knight et al.

2005; Medhaug and Furevik 2011; Wang and Zhang

2013; Zhang and Wang 2013; MacMartin et al. 2013; Ba

et al. 2014; O’Reilly et al. 2016; Kim et al. 2018; Garuba

et al. 2018). Atlantic basinmean warming (i.e., a positive

NASSTI anomaly) is preceded by anomalous heat fluxes

from the atmosphere into the ocean, showing that

NASSTI is primarily driven directly by atmospheric

forcing (and could thus be simulated by slab-ocean

models). However, lower-frequency SST variability in

the subpolar North Atlantic is primarily driven by ocean

circulation changes that sustain anomalous heat trans-

port into the subpolar North Atlantic. These ocean cir-

culation changes are partially a response to prior
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FIG. 7. Schematic evolution of an AMO warm event. Summary

of the atmospheric and oceanic anomalies during the (a) growth,

(b) peak, and (c) decay phases of an AMO warm event. Orange

shading shows an SST anomaly characteristic of each stage (taken

from years25,21, and 3 in Fig. 6). Blue and red contours indicate

low and high pressure anomalies, respectively. Black arrows in-

dicate strong zonal winds during the growth stage. Upward squig-

gly arrows indicate anomalous heat fluxes (including radiation)

from the ocean into the atmosphere; downward indicate fluxes

from the atmosphere into the ocean. The dark red arrow shows the

path of the Gulf Stream and North Atlantic Drift; its width cor-

responds to the magnitude of the AMOC anomaly in each phase of

the AMO. Note that the heat flux anomalies in the eastern North

Atlantic (southeast of Iceland) and in the subtropical North At-

lantic change signs between (b) the peak phase and (c) the decay

phase, indicating that SST anomalies are driven by the atmosphere

in this region (while being driven by the ocean elsewhere).
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atmospheric forcing, but are driven by anomalous sur-

face heat fluxes from the ocean to the atmosphere (which

by themselves would act to cool the subpolar North

Atlantic). Both processes contribute to Atlantic SST

variability, albeit on different time scales and in dif-

ferent geographic regions. The coupled atmosphere–ocean

variability of the subpolar North Atlantic explains

more than twice as much multidecadal SST variance as

NASSTI, illustrating the importance of dynamic ocean–

atmosphere coupling in Atlantic multidecadal variability.

As a final test of these conclusions, we run our analysis

on a preindustrial control simulation of a slab-ocean

model, wherein SSTs are allowed to respond thermo-

dynamically to atmospheric fluxes but no ocean dy-

namics or heat transport changes are resolved. We use a

901-yr simulation of the CAM5 atmospheric general

circulation model coupled to a slab-ocean (CESM1 in

slab-ocean mode) and run with fixed preindustrial (year

1850) forcing. This simulation was run as part of the

Community Earth System Model (CESM) Large En-

semble project (Kay et al. 2015). The leading LFP of

Atlantic SSTs in the slab-oceanmodel shows warming in

the subpolar North Atlantic, similar to the fully coupled

models (Fig. 11a). Its ratio of low-frequency to total

variance is r5 0:46, smaller than but comparable to that

in the corresponding coupled model (CESM1-BGC;

r5 0:59). However, a slab-ocean model cannot have

anomalous heat fluxes out of the ocean preceding

positive SST anomalies, because there is no ocean heat

flux convergence to sustain this heat loss. Indeed, the

lead–lag regression of subpolar heat flux anomalies

on the slab-ocean LFC 1 shows anomalous heat fluxes

into the ocean immediately before a warm event and out

of the ocean immediately after (inset in Fig. 11b), in-

dicating that the SST variability is atmosphere driven, as

it must be in the absence of ocean dynamics.

Heat flux anomalies into the subpolar ocean in the

years preceding a slab-ocean warm event are associ-

ated with large negative NAO anomalies (Fig. 12b), in

contrast to the positive NAO anomalies that precede

warm events in coupled models (Fig. 12a). The lead–lag

correlations of the NAO and AMO (as characterized

by LFC 1) have opposite signs between coupled and

slab-ocean models at most lead times. This raises the

question: Can we use this to distinguish which mecha-

nism applies in observations? We calculate NAO over

the period 1900–2014 from the NCAR Twentieth

Century Reanalysis (Compo et al. 2011), and compute

its lead–lag correlation with the AMO-like LFC 2 from

the ERSST analysis. This analysis shows positive NAO

anomalies from 30 to 5 years before the subpolar At-

lantic warming and negative NAO anomalies in the

decades following (Fig. 12c). This is qualitatively simi-

lar to the lead–lag relationship between NAO andAMO

in the coupled models, albeit larger in magnitude and on

longer time scales. It is inconsistent with the lead–lag

relationship between NAO and AMO in slab-ocean

models. In agreement with other recent studies (Zhang

et al. 2016; O’Reilly et al. 2016), these results suggest that

FIG. 8. Time scales of Atlantic SST variability. (a) Multimodel

mean power spectrum of LFC 1, NASSTI, and the subpolar (408–
608N, 208–608W) SST index. (b) Multimodel mean squared co-

herence of LFC 1 and NASSTI. The dashed line gives the 95%

significance level (0.19). (c) Phase lag associated with the co-

herence spectrum in (b). Positive phase lags indicate the extent to

which LFC 1 leads NASSTI. (d) Lead–lag correlation between

LFC 1 and NASSTI (black line). The gray shading shows the

NASSTI autocorrelation for comparison.
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the mechanisms of Atlantic multidecadal variability in

slab-ocean models are inconsistent with the mechanisms

of Atlantic multidecadal variability in coupled models

and observations.

7. Discussion and conclusions

Low-frequency component analysis (LFCA) iden-

tifies the spatial signature of multidecadal Atlantic SST

variability focused in the subpolar North Atlantic. The

corresponding index is highly correlated with the AMO

as traditionally defined but has a much higher ratio of

interdecadal to intradecadal variance. This allows us to

identify which physical mechanisms are important at

decadal and longer time scales, filtering out mechanisms

that play a role at shorter time scales.

We find that AMO temperature anomalies in un-

forced coupled climate models are driven by ocean heat

flux convergence in the subpolar North Atlantic, asso-

ciated with anomalies in AMOC. Stochastic atmo-

spheric variability, such as the NAO, is an important

influence on the evolution of AMOC because of its in-

fluence on air–sea heat fluxes in the Labrador Sea. A

positive NAO anomaly is associated with strengthened

westerlies off eastern North America, increasing heat

loss from the Labrador Sea and increasing the strength

of AMOC. During the peak phase of the AMO, a ba-

sinwide low pressure anomaly develops in response

to the warmer temperatures and helps to spread the

warming to the east and south through wind-evaporative

and cloud feedbacks. Consistent with previous model-

ing studies of the impact of extratropical Atlantic SST

anomalies on atmospheric circulation (e.g., Hodson

et al. 2010; Sun et al. 2015), this anomaly is weak and

does not project strongly onto the NAO. However, by

using a large multimodel ensemble, we are able to char-

acterize a statistically significant low pressure anomaly

over the North Atlantic and weakly negative NAO

in the years during and following a warm subpolar

SST anomaly (Figs. 5, 6). This atmospheric circulation

anomaly helps to weaken AMOC and terminate the

AMOC-driven warming by adding buoyancy in the

eastern North Atlantic. This mechanistic picture of

the AMO suggests that ocean circulation provides the

main source of inertia in the climate system that sus-

tains SST anomalies on long time scales. Ocean mixed

FIG. 9. Subpolar SST index. (a) SST pattern associated with an SST index based on the average SST anomaly over the subpolar box

shown. The autocorrelation of the index is shown in the inset. (b) Net upward surface heat flux (SHF) anomalies associated with a one

standard deviation anomaly in the subpolar SST index. The inset shows the lead–lag regression of heat flux anomalies (averaged over the

subpolar box) onto the subpolar SST index. Lag-0 is the time where the SST pattern is maximum; positive lags indicate heat flux anomalies

that lag the subpolar SST index. Dashed gray lines give the 95% significance levels based on phase randomization. (c) AMOC stream-

function anomaly associated with a one standard deviation anomaly in the subpolar SST index. TheAMOC streamfunction climatology is

shown in black contours (contour interval: 2 Sv). (d) SLP anomaly associated with a one standard deviation anomaly in the subpolar SST

index.

264 JOURNAL OF CL IMATE VOLUME 32



layer dynamics, which provides the source of inertia

in the ‘‘slab-ocean’’ view of the AMO put forth by

Clement et al. (2015) and Cane et al. (2017), is not the

dominant mechanism in the North Atlantic at multi-

decadal time scales.

This study has focused on themechanisms of unforced

AMO variability in CMIP5 models. However, external

forcing is thought to play a large role in observed AMO

variability over the historical period (Booth et al. 2012;

Tandon and Kushner 2015; Si and Hu 2017; Bellucci

et al. 2017; Bellomo et al. 2018). Some of the insights

about internal variability should also apply to forced

changes because AMOC changes in response to forcing

appear to be dominated by changes in surface heat

fluxes, rather than changes in surface freshwater fluxes

(Gregory et al. 2005). In unforced simulations, AMOC

responds to NAO-driven heat flux anomalies in the

Labrador Sea. In forced simulations, additional Labrador

Sea heat fluxes due to greenhouse gas and aerosol forcing

(including surface radiative fluxes) must be considered in

the dynamics of AMOC and AMO.

The LFCA-based description of the AMO is largely

consistent with other recent work showing that air–sea

heat flux anomalies are ocean driven on decadal and

longer time scales (Zhang et al. 2016; O’Reilly et al.

2016), that positive NAO anomalies can lead to AMOC

strengthening and warming with a lag of several years

(Sun et al. 2015; Delworth and Zeng 2016; Delworth

et al. 2016, 2017), and that wind-evaporative and cloud

feedbacks are important for extending warming into the

tropical Atlantic (Yuan et al. 2016; Brown et al. 2016;

Bellomo et al. 2016). The key benefit of LFCA in

this context is that the derived AMO index is not low-

pass filtered and can thus resolve rapid transitions and

clarify the interactions between high-frequency atmo-

spheric variability (i.e., NAO) and the slowly evolving

ocean, including NAO interactions with AMOC (dis-

cussed in the main text) and NAO interactions with the

Gulf Stream and gyre circulation (appendix B). Much

of the previous work on the AMO is based on lead–lag

regressions on low-pass filtered indices, which can mix

together processes leading up to AMO events with those

FIG. 10. Low-pass filtered NASSTI. (a) SST pattern associated with the 10-yr low-pass filtered NASSTI. The autocorrelation of the

index is shown in the inset. (b) Net upward surface heat flux (SHF) anomalies associated with a one standard deviation anomaly in low-

pass filtered NASSTI. The inset shows the lead–lag regression of heat flux anomalies (averaged over 08–608N in the North Atlantic) onto

low-pass filtered NASSTI. Lag-0 is the time when the SST pattern is maximum; positive lags indicate heat flux anomalies that lag low-pass

filtered NASSTI. Dashed gray lines give the 95% significance levels based on phase randomization. (c) AMOC streamfunction anomaly

associated with a one standard deviation anomaly in low-pass filtered NASSTI. The AMOC streamfunction climatology is shown in black

contours (contour interval: 2 Sv). (d) SLP anomaly associated with a one standard deviation anomaly in low-pass filtered NASSTI. The

low-pass filtered NASSTI mixes together the positive NAO anomalies driving AMOC variability and the negative NAO anomalies

helping to terminate AMOC-driven warm events such that it shows a weak overall SLP anomaly and obscures the role of ocean–

atmosphere dynamic coupling in AMO variability.
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following and hide causal relationships (Cane et al. 2017).

Using LFCA, we recover many of these conclusions

while avoiding these pitfalls, adding confidence that

dynamical coupling between atmospheric and oceanic

circulations is fundamental to the dynamics of the

AMO. Our analysis identifies the SST fingerprint of

low-frequency AMO/AMOC variability, which may be

useful for ongoing efforts to monitor and predict the

evolution of AMOC and the AMO.
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APPENDIX A

Differences across Models

All results presented in the main text are a composite

over 26 different CMIP5 models (Table 1). These dif-

ferent models show varying amplitudes and patterns of

Atlantic multidecadal variability. In Figs. A1a and A1b,

we plot the amplitude (relative to the ensemble mean)

and low-frequency to total variance ratio of LFC 1 and

NASSTI, respectively, in each model. The relative am-

plitude shows how much each model is weighted in the

multimodel composites of the main text. Models that

have above-average LFC 1 amplitude tend to have above-

average variance ratio as well, suggesting that the

models with a low variance ratio (particularly GISS-E2-H,

FGOALS-s2,BCC-CSM1.1,BNU-ESM,CCSM4,CanESM2,

MRI-CGCM3, and NorESM1-M) simply do not display the

FIG. 11. Low-frequency component of slab-ocean simulation.

(a) LFP 1 of Atlantic SSTs in a preindustrial control simulation

with a slab-ocean version of CESM1. The inset shows the auto-

correlation and low-frequency to total variance ratio r of the as-

sociated LFC. (b) Regression of sea surface heat flux anomalies

onto LFC 1 in the slab-ocean model. The map shows the lag-0 re-

gression. The inset shows the lead–lag regression of heat flux

anomalies averaged over the subpolar box. Lag-0 is the time when

the SST pattern is maximum; positive lags indicate heat flux

anomalies that lag LFC 1. Dashed gray lines give the 95% signifi-

cance levels based on phase randomization.

FIG. 12. Lead–lag correlation with NAO. Lead–lag relationship

between DJF NAO anomaly and the AMO-like LFC in (a) fully

coupledCMIP5models, (b) theCESM1 slab-ocean simulation, and

(c) observations. For the observational analysis, we take SLP from

the NCAR Twentieth Century Reanalysis (Compo et al. 2011).

NAO is defined as the difference in normalized SLP anomaly be-

tween Reykjavik and Lisbon (Hurrell 1995). The cross correlation

betweenAMOandNAO is computed for monthly anomalies, then

averaged over DJF (based on the month of the SLP field). Dashed

gray lines give the 95% significance levels based on phase ran-

domization [of LFC 1 for (a) and (b), of NAO for (c)]. Note the

extended time axis in (c).
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multidecadal variability associated with AMOC to as great

of a degree. In all models, the variance ratio of LFC 1 is

greater than the variance ratio of NASSTI. The amplitude

and low-frequency to total variance ratio of the AMO-like

LFC inERSSTarewithin, but at theupper endof, the range

of values shown in the preindustrial ensemble. In terms of

low-frequency to total variance ratio and amplitude, the

models that show the AMO-like variability most similar

to that within ERSST are ACCESS1.0, ACCESS1.3,

CSIRO-Mk3.6.0, GFDL-CM3, GFDL-ESM2G, and

HadGEM2-ES. The linearlydetrendedNASSTIhasamuch

larger amplitude in ERSST than it does in the preindustrial

simulations, but this is likely a consequenceofmixing inpartof

the forced climate response.

We have also applied LFCA to each model separately

to investigate the extent to which the individual-model

LFPs resemble the ensemble-meanLFP1. Inmostmodels,

the LFC most correlated (in terms of temporal correla-

tion) with LFC 1 from themultimodel ensemble analysis is

one of the leading LFCs and shows a qualitatively similar

pattern of warming to the ensemble-mean LFP 1, with

localized warming in some region of the subpolar North

Atlantic (Fig.A2, cf. Fig. 2a). In particular, ACCESS1 (two

models), CMCC-CMS, CSIRO-Mk3.6.0, GFDL-CM3,

GFDL-ESM2 (two models), GISS-E2-R, HadGEM2-

ES, INM-CM4.0, MIROC5, and MPI-ESM (three

models) show patterns similar to the ensemble mean.

A plausible reason for the differences betweenmodels is

that they differ in their representations of the shape of

the subpolar gyre and the geographic locations of deep

water formation. Two models are omitted from Fig. A2

for space limitations:GISS-E2-H is similar toGISS-E2-R,

but with a lower low-frequency to total variance ratio

(r5 0:55); NorESM1-M shows substantial multidecadal

variability, but it is mostly at smaller spatial scales than

in other models, and none of it resembles the ensemble

composite picture of AMO variability. Note that these

two models (GISS-E2-H and NorESM1-M) contribute

the least to the multimodel composite (Fig. A1).

APPENDIX B

The Second Low-Frequency Component: Tripolar
SST Anomalies Associated with the NAO

The second LFP of monthly Atlantic SST anomalies

(between 408S and 758N) in the preindustrial ensemble

shows a tripolar SST anomaly pattern in the high-

latitude North Atlantic (Fig. B1a), with warming in the

Gulf Stream, cooling in the subpolar gyre, and warming

in the Norwegian seas. This is similar to the coupled

ocean–atmosphere dynamics of Gulf Stream and gyre

circulation variability studied by Taylor and Stephens

(1998), Curry and McCartney (2001), Eden and Jung

(2001), Sun et al. (2015), Gastineau and Frankignoul

(2015), and Nigam et al. (2018), among others.

LFC 2 has a ratio of low-frequency to total variance

r5 0:42, compared to r5 0:60 for LFC 1. While LFCs 1

and 2 are uncorrelated at lag-0 by definition, they have

some lead–lag correlations, with negative LFC 1 anoma-

lies tending to lead to positive LFC 2 anomalies, and

positive LFC 2 anomalies tending to lead to positive

LFC1anomalies (Fig.B1f).However, rather than indicating

a causal relationship between LFCs 1 and 2, the cyclical

nature of LFC 1/LFC 2 variability likely arises because they

represent different time scales of the ocean’s response to a

common NAO forcing. There are positive NAO anomalies

0–6 years before a maximum in LFC 2 (Fig. B1e) and 2–15

FIG.A1.AMOcharacteristics acrossmodels. Relative amplitude and low-frequency to total variance ratio of (a) LFC 1 and (b)NASSTI

in each model. Since these indices have unit variance over the entire ensemble, the relative amplitude is the variance of the index in the

data segment corresponding to an individual model (i.e., the ratio of variance within amodel to the variance within the full ensemble). For

ERSST, the relative amplitude is computed by comparing the amplitudes (spatial variance) of the patterns in Figs. 1 and 2, and the

variance ratio is the ratio of low-frequency to total variance of the indices in Fig. 1c.
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FIG. A2. Characterizing AMO in different models. The LFP with the highest pattern correlation with the full-ensemble

LFP 1 (Fig. 2a) from LFCA of each model separately, and the evolution of its corresponding LFC (in units of standard

deviation) vs model year. Note that the same LFC/LFP is identified if we choose it instead by its temporal correlation with

the full-ensemble LFC 1. The low-frequency to total variance ratio r is shown with each LFC. Note that some models

(especially GFDL-ESM2G) have SST anomalies greater than 18C that are saturated on the color scale.
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years before a maximum in LFC 1 (Fig. 5b). Therefore, a

persistent positive NAO anomaly would lead to first a pos-

itive LFC 2 anomaly, and then, after a lag, a positive LFC 1

anomaly.

As was the case for LFC 1, the net surface heat flux

anomaly associated with LFC 2 indicates an active role

of ocean heat transport, because warm temperatures

are coincident with a net heat flux from the ocean to

the atmosphere and vice versa (Fig. B1b). The lead–lag

regression of subpolar gyre heat fluxes against LFC 2

shows heat flux into the ocean when the subpolar gyre is

cold (lag-0), as well as anomalies at 10-yr lead times

and 5-yr lag times that are associated with LFC 1 and

AMOC (inset in Fig. B1b). The spatial scale and

westward intensification of the SST and net surface

heat flux anomalies suggest that this is a mode of

variability in the ocean gyre circulations. However, there

is also a high-latitude AMOC streamfunction anomaly

associated with LFC 2 (Fig. B1d). It shows a latitudinal

shift rather than a strengthening of AMOC and is there-

fore not well represented by the AMOC index (Fig. B1g).

The positiveAMOCanomaly associatedwith LFC 2 spans

the latitude range beyond that of the hemispheric AMOC

anomaly associated with LFC 1.
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