Introduction

Understanding the influence of different forcings on climate system is a main objective within PALVAREX. This study focuses on temperature responses to volcanic forcing. The impact of explosive volcanic eruptions on surface temperature during the reliable instrumental period has been studied extensively at the hemispheric and global scale. A new compilation of 500 year spatio-temporal highly resolved temperature reconstructions (1), recently developed for the European land areas, offers extended insight into the impact of major volcanic eruptions on a regional scale.

Data and Methods

The seasonal European land surface temperature data set used in this study extends from 1500 to 1998. The temperature estimations are based on a combination of early instrumental station series and documentary proxy evidence revealed to be trustworthy over the last centuries (1). Fifteen major tropical volcanic eruptions are selected combining two measures of past volcanic activity, the Volcanic Explosivity Index (VEI) (2) and the Ice Core Volcanic Index (IVI) (3). Superseded epoch analysis is performed to identify the mean climate response to large volcanic eruptions. Taking the eruption year as key date we calculate seasonal temperature anomaly fields with reference to the five years preceding the eruption. Composite anomaly fields were established for every summer and winter in the five years following the eruptions (Fig. 1).

In a next step, we calculated European land surface average temperature anomalies for an extended period of 19 years (9 pre- and 9 post-eruption years) (Fig. 2). The significance of the composite response is established by a Monte Carlo resampling procedure. For each eruption event a new distribution is generated by random reshuffling of the 19 years period. The resulting composite distributions are used to determine the statistical significance of the actual composite response (Table 1). This method preserves the distribution and simply destroys any preferred temporal ordering (4).

Results and Discussion

The composite temperature field of the second summer (Fig. 1, left panel) following 15 selected major volcanic eruptions during the period 1500—1998. The standard deviations are given in contours.

The composite temperature pattern in the second winter (Fig. 1, right panel) after the eruptions indicates a strong warming, in particular in Northern Europe. The Mediterranean no effect can be noticed. The tropospheric summer cooling is directly caused by aerosol radiative effects (5).

Conclusions

- The European surface summer temperature response to explosive volcanic eruptions over the last 500 years reveals a significant cooling effect with its maximum in the second summer. This can be explained by radiative cooling due to scattering by stratospheric aerosols.
- The composite winter temperature pattern following tropical eruptions indicates a strong warming, especially pronounced over Northern Europe.
- The results suggest a significant `rebound` into the opposite conditions both for summer and winter temperatures in the fourth year and fifth year, respectively, before the temperature variations return to a pre-eruption state (cf. 4).

References


Acknowledgements

This work was carried out as part of the NCCR Climate project PALVAREX. We thank C. Ammann for his helpful suggestions and his support.