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Objective calibration of regional climate models

0. Bellprat,l S. Kotlarski,! D. Liithi,' and C. Schar

Received 8 June 2012; revised 28 September 2012; accepted 23 October 2012; published 13 December 2012.

[1] Climate models are subject to high parametric uncertainty induced by poorly confined
model parameters of parameterized physical processes. Uncertain model parameters are
typically calibrated in order to increase the agreement of the model with available
observations. The common practice is to adjust uncertain model parameters manually,
often referred to as expert tuning, which lacks objectivity and transparency in the use

of observations. These shortcomings often haze model inter-comparisons and hinder

the implementation of new model parameterizations. Methods which would allow

to systematically calibrate model parameters are unfortunately often not applicable to
state-of-the-art climate models, due to computational constraints facing the high
dimensionality and non-linearity of the problem. Here we present an approach to
objectively calibrate a regional climate model, using reanalysis driven simulations and
building upon a quadratic metamodel presented by Neelin et al. (2010) that serves as a
computationally cheap surrogate of the model. Five model parameters originating from
different parameterizations are selected for the optimization according to their influence on
the model performance. The metamodel accurately estimates spatial averages of 2 m
temperature, precipitation and total cloud cover, with an uncertainty of similar magnitude
as the internal variability of the regional climate model. The non-linearities of the
parameter perturbations are well captured, such that only a limited number of 20-50
simulations are needed to estimate optimal parameter settings. Parameter interactions are
small, which allows to further reduce the number of simulations. In comparison to an
ensemble of the same model which has undergone expert tuning, the calibration yields
similar optimal model configurations, but leading to an additional reduction of the model
error. The performance range captured is much wider than sampled with the expert-tuned
ensemble and the presented methodology is effective and objective. It is argued that
objective calibration is an attractive tool and could become standard procedure after
introducing new model implementations, or after a spatial transfer of a regional climate
model. Objective calibration of parameterizations with regional models could also serve as
a strategy toward improving parameterization packages of global climate models.
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1. Introduction

[2] Climate models are validated against observational data
sets in order to judge the capability of the model and to
determine model deficiencies which originate from different
modeling assumptions with their related uncertainties. A major
source of this uncertainty stems from the large number of
parameterized physical processes within the climate model
and the associated unconfined model parameters. Several
studies have demonstrated the importance of this “parameter
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uncertainty” for the simulation of present and future climates
by perturbing single and multiple model parameters within
plausible parameter ranges determined by expert judgment
[Knutti et al., 2002; Murphy et al., 2004; Stainforth et al.,
2005; Klocke et al., 2011; Bellprat et al., 2012]. Since uncer-
tain model parameters are responsible for a large part of
modeling errors, the parameter uncertainty is typically con-
strained by calibration or tuning methods to improve the
agreement of the climate model and the available observations.

[3] Model calibration and tuning is a subject of constant
debate and strongly diverging opinions [Oreskes et al., 1994;
Randall and Wielicki, 1997; Beven, 2002]. Because of the
high risk that calibrated model processes may compensate for
model errors which may not originate from the respective
parameterization [Murphy et al., 2007], model tuning is
sometimes referred to as bad empiricism. It has also been
suggested that parameterizations should therefore be cali-
brated in terms of climate processes rather than against
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variables of interest such as surface temperature and precip-
itation [Randall and Wielicki, 1997]. However, related
observations are often not available or associated with high
observational uncertainties.

[4] Despite the risk of compensating errors, the prerequi-
site that climate models should be able to reproduce past
observations in order to project a future climate remains a
common consensus. In practice, model calibration or tuning
against available observations is therefore routinely per-
formed, mainly by expert tuning. Expert tuning is a loose
term referring to the subjective adjustment of model para-
meters, mostly neglecting parameter interactions and fol-
lowing no objective procedure. This practice typically lacks
of transparency on the use of observations [Knutti and
Hegerl, 2008]. Often the associated tuning does not follow
a well-defined strategy, lacks proper documentation, and
often happens implicitly at the workbench of scientists that
aim at improving existing or implementing new parameter-
ization schemes. Much tuning happens in a grey zone
between the development and implementation of parame-
terization schemes, as there is little guidance where the one
ends and the other begins. The lack of accepted calibration
and tuning methodologies carries considerable risks. For
instance, sometimes one may wonder whether some “dem-
onstrated model improvement” indeed reflects an improved
model structure, or whether it derives merely from skillful
tuning efforts. Likewise, the lack of approved standards
implicitly leads to increasing model complexity, as the
number of tunable parameters— at least in principle — raises
the prospects of model tuning (but also increases the risk of
over-parameterization).

[5] The development and application of objective cali-
bration methods has therefore recently gained much atten-
tion in climate science. In particular climate models of inter-
mediate complexity have been subject to a wide range of
objective calibration methods, as shown by, e.g., Price et al.
[2009] using genetic algorithms, or by Beltran et al. [2006]
using an oracle-based optimization. Also physical surrogates
of general circulation models with reduced complexity or
resolution have been optimized with very different approa-
ches ranging from ensemble Kalman filters, Latin hyper-
cubes, and Markov chain Monte Carlo integrations [Jackson
et al., 2004; Jones et al., 2005; Annan et al., 2005; Medvigy
et al., 2010; Jarvinen et al., 2010; Gregoire et al., 2011],
with an overview presented in Annan and Hargreaves
[2007]. Most of these methods are not directly applicable
to computationally costly general circulation models, since
typically hundreds of simulations have to be performed in
order to calibrate a small set of model parameters.

[6] Here we argue that calibration should also be addres-
sed, even with costly and complex atmospheric models, and
that it should follow some well-defined standards. In par-
ticular, calibration should (1) be transparent and reproduc-
ible, (2) target a small list of key tunable parameters,
(3) optimize a pre-defined performance score that accounts
for uncertainties associated with observations and predict-
ability, (4) employ an objective optimization methodology,
and (5) allow for a clear separation between calibration
and validation/verification periods. Similar standards have
been discussed and implemented in other science fields for
some time. For instance, for hydrological models, where
the number of tunable parameters is overwhelming, some
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general principles have emerged [e.g., Beven,
Refsgaard and Henriksen, 2004].

[7] A promising way to overcome the problem of com-
putational costs is to construct a statistical surrogate model,
also termed model emulator [O 'Hagan, 2006] or metamodel
[Neelin et al., 2010], which is a computationally cheap
representation of the climate model’s sensitivity to parame-
ter perturbations. A model emulator allows estimating the
simulated climate variables of interest for a specific input of
model parameters, without conducting full model simula-
tions. Using an emulator, large ensembles of the climate
model can be computed as done, e.g., in Huber [2011],
which allows the application of comprehensive calibration
methods. Different kinds of surrogate models have been
considered to emulate climate models, ranging from artificial
neural networks [Knutti et al., 2003], parametric regression
models [Neelin et al., 2010] and non-parametric Gaussian
process models [Rougier et al., 2009].

[8] Here we present an application of a calibration frame-
work using a second order polynomial metamodel proposed
by Neelin et al. [2010] to a regional climate model (RCM).
Other studies have already successfully used quadratic
regressions to estimate parameter perturbations [Jones et al.,
2005], yet in contrast to the present study neglecting param-
eter interactions.

[9] The calibration of RCMs is particularly interesting
because RCM experiments driven by re-analysis data at the
lateral boundaries allow isolating the effects of regional-
scale processes on error characteristics [Suklitsch et al.,
2010; Bellprat et al., 2012, hereinafter B11]. However, to
our knowledge, so far no objective calibration framework for
RCMs has been presented.

[10] The present paper is structured as follows: Section 1
describes the modeling approach, sections 2 and 3 show
how the model performance is assessed and used to deter-
mine important model parameters, section 4 explores the
application of a metamodel and section 5 discusses the model
calibration and the implications for expert tuning.

1989;

2. Development of Methodology

2.1.

[11] The model used for this calibration study is the non-
hydrostatic regional climate model COSMO-CLM (hereafter
CCLM) version 4.8. The CCLM model is a versatile limited-
area atmospheric modeling system including a whole suite
of model parameterizations [Steppeler et al., 2003; Férstner
and Doms, 2004]. 1t is based on the non-hydrostatic com-
pressible atmospheric equations, uses the split-explicit time
stepping scheme [Klemp and Wilhelmson, 1978; Wicker and
Skamarock, 2002], and is suited for applications with hori-
zontal grid-spacings from about 100 m to 100 km. The
CCLM has heavily been used for regional climate studies
using real-case [e.g., Kotlarski et al., 2012] and idealized
configurations [e.g., Schlemmer et al., 2011].

[12] The setup of CCLM for the current study is identical as
in B11 with some modifications of the model physics: Other
than using the cumulus convection scheme of the ECMWF
Integrated Forecast System (IFS) model (P. Brockhaus et al.,
The ECMWF IFS convection scheme applied to the
COSMO-CLM limited-area model, submitted to Quarterly
Journal of the Royal Meteorological Society, 2011) we use

Regional Climate Model Approach
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Figure 1. Model domain and PRUDENCE analysis
regions: BI = British Isles, FR = France, IP = Iberian Penin-
sula, MD = Mediterranean, AL = Alps, ME = Mid-Europe,
EA = Eastern Europe. The domain has a rotated pole and a
resolution of 0.44° (~50 km).

the default Tiedtke convection scheme [Tiedtke, 1989]. In
addition the aerosol climatology has been changed from an
default climatology of Tanré et al. [1984] to the higher res-
olution AEROCOM climatology [Kinne et al., 2006], which
provides more realistic estimates of aerosol loadings over
Europe [Zubler et al., 2011]. Further changes include a sat-
ellite derived soil albedo field from the MODIS sensor and a
plant albedo field [Houldcroft et al., 2009].

[13] The domain of the RCM covers a greater European
region at a resolution of 0.44° as shown in Figure 1 with
contours representing the model topography. The black
boxes show climatic regions commonly termed PRUDENCE
regions on which the analysis for this study is based. In order
to be consistent with B11 we focus on the same time period
from 1990 to 2000. For this period a reference simulation
(REF) has been performed with model settings derived from
an expert tuning process for the Coordinated Regional cli-
mate Downscaling Experiment over Europe (CORDEX,
www.euro-cordex.net). Furthermore an initial condition
ensemble with of five simulations from 1990 to 2000 with 6
hourly shifts of the initialization time was conducted to
determine the model’s internal variability. Due to computa-
tional constraints, the number of simulations in this ensemble
is kept at a lower limit but is consistent with other studies
assessing the internal variability of RCMs [e.g., Roesch et al.,
2008]. The simulations used to find optimal parameter con-
figurations and to determine the accuracy of the metamodel
are restricted to the 5-year period from 1994 to 1998 which is
a sufficient integration length to reach convergence of the
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adopted skill metrics (see B11). These experiments were
initialized with the equilibrium state as obtained from the
reference simulation.

2.2. Validation Framework

[14] The parameter optimization of requires a framework to
objectively assess model performance against observations.
There are many ways how to measure the performance of a
climate model, with choices regarding the metrics, model
variables and data sets. Although there is some guidance for
the validation climate models different approaches often lead
to controversial outcomes [Gleckler et al., 2008]. The perfor-
mance of models is typically assessed with some distance
measure between the model and observations [Perkins et al.,
2007; Christensen et al., 2010]. Since one variable might be
improved at the expense of some other [Jones et al., 2005;
Vidale et al., 2003], several studies use a multivariate frame-
work including several variables which represent dominant
climate processes, as e.g. top of the atmosphere radiation,
surface radiation balance, mean sea level pressure and total
cloud cover [Gleckler et al., 2008].

[15] In this study we use the validation framework pre-
sented in B11. Model performance is expressed as a function
of 2 m temperature (T2M), precipitation (PR) and total cloud
cover (CLCT). This allows to validate the variables that are
often of primary interest (T2M, PR) and an additional pro-
cess variable (CLCT) which plays an important role in the
interaction of the three variables [Jaeger et al., 2008] and
which is one of the major sources of uncertainty in climate
change projections [/ntergovernmental Panel on Climate
Change (IPCC), 2007]. The variables are validated using
interannual time series of monthly means, averaged spatially
for eight distinct climatic regions in Europe (PRUDENCE
regions, see Figure 1). The error of these time series is
measured using a performance index (P/),

(m— o)’
Pr= <(0’o+aiv+ae)>’ M

which is a least squares estimation scaled by the interannual
variability and including two sources of uncertainty, namely
the internal variability and the observational uncertainty. The
brackets in (1) denote the mean of monthly time series from
1994 to 1998 (T = 60 monthly averages), averaged over each
PRUDENCE region (R = 8 regions), and for the three model
variables (T2M, PR, CLCT, V = 3). PI is therefore the mean
of R - T'- V= 1440 least squares errors between the model (m)
and the observations (o), scaled by the interannual variability
(o,) expressed as the standard deviations of the observations
(1990-2000), the observational uncertainty (o,.) derived
from different reference data sets, and the internal variability
(0;,) of the regional model derived from the initial condition
ensemble. The uncertainty terms in the denominator of P/
have the same dimensions as the spatiotemporal means.
Further details about P, including information about the
choice of the observational data sets, can be found in B11.

[16] The error P/ is consequently transformed into a pos-
itive defined performance score (PS), which is an approxi-
mation of the Gaussian likelihood:

PS = exp(—0.5PI). (2)
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Table 1. Model Parameters Used to Calibrate the RCM?

Acronym Parameter/Property Value
rlam_heat  Scalar resistance for the latent [0.1, 1, 10]
and sensible heat fluxes in
the laminar surface layer
entr_sh Entrainment rate for shallow [3- 1075,3 - 1074,
convection 3.1079)
qi0 Threshold for conversion of [0, 1074
cloud ice to snow
ucl Parameter controlling the [0,0.8,1.6]
vertical variation of critical
relative humidity for
sub-grid cloud
formation
root_dp Uniform factor for the root depth field [0.5,1,1.5]

“The Value column shows the default values (in boldface) and a
minimum and maximum bound for each parameter estimated in B11.

A comparison of PS to alternative widely used scores is
discussed in B11.

2.3.

[17] In B11 a broad range of uncertain model parameters
have been tested in order to estimate the associated parameter
uncertainty of CCLM. Evaluation of parameters has included
numerous discussions with scientists responsible for the
parameterization schemes used, and a large number of model
simulations. Using the definition of PS, the parameters which
affect the CCLM performance strongest, within the range of
plausible parameter bounds, were identified. One-yearlong
simulations have proven sufficiently long to screen tunable
model parameters regarding their relative importance in per-
turbing CCLM. Based on this knowledge, five model para-
meters have been selected for calibration, namely a factor for
the laminar resistance of surface heat fluxes (rlam_heat), the
entrainment rate for shallow convection (entr_sc), the auto-
conversion threshold for cloud ice (gi0), a parameter con-
trolling the sub-grid cloud formation (uc1) and a uniform
factor for the root depth field (root dp). The parameters are
summarized in Table 1 with their respective default values
and related uncertainty ranges determined by expert elicita-
tion. The sensitivity of PS with respect to the variation of the
selected parameters is shown in Figure 2, where for each
parameter (except for ¢i0) a minimum and a maximum value
(black dots) have been tested and compared to the default
value (red dot). The contributions to the performance score
PS from each of the three variables (T2M, PR, CLCT) have
been interpolated with a quadratic regression in order to
judge on the sensitivity for each variable individually.

[18] A more detailed picture on the sensitivity of the
model with respect to the selected parameters is provided in
Figure 3. The figure shows the deviations of CCLM from the
reference simulation when single parameters or pairs of model
parameters are perturbed. Results are presented for three
model variables in JJA and DJF, spatially averaged for the
8 PRUDENCE regions (horizontal axes). Compared to the
bias of the reference simulation, shown in the first row of each
panel, the deviations of the parameter experiments are spatially
uniform in most cases. Seasonal variability of the deviations is
achieved by some of the experiments as shown for the per-
turbation of rlam_heat and the response of the 2 m temperature

Identifying Calibration Parameters
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in JJA compared to DJF. The precipitation of many experi-
ments shows little sensitivity, indicating limited potential to
overcome the current biases of precipitation. For all three
model variables considered in the figure, the biases of the
reference simulation show higher spatial and seasonal vari-
ability than the patters of individual parameter experiments.
This suggests that several of the selected parameters need to be
varied to achieve an overall improvement of the model.

2.4. Constructing a Metamodel

[19] The fact that RCMs are computationally very expen-
sive inhibits the application of calibration algorithms. One way
to overcome this problem is to construct a computationally
cheap surrogate model, hereafter termed metamodel (MM),
which estimates a model quantity of interest for a given param-
eter input vector y of the climate model. A computationally
cheap metamodel allows thereafter to apply any optimization
algorithm to estimate an optimal parameter setting.

2.4.1. Quadratic Metamodel

[20] In this study we choose to emulate the output of the
regional climate model using a parametric regression model
presented by Neelin et al. [2010]. The metamodel bases on the
assumption that changes of a climate model quantity due to a
parameter perturbation are smooth and thus can be approxi-
mated by a 2nd order polynomial regression. As a quadratic fit
is determined by only three points, this assumption allows to fit
the MM with a low number of simulations, which is crucial for
computationally expensive climate models. The MM is simple
and transparent in contrast to more complex emulators as e.g.
neural networks [Knutti et al., 2003; Hauser et al., 2012] where
the underlying emulator structure often remains obscure. The

=
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Figure 2. Sensitivity of model performance PS with
respect to five model parameters. PS is computed in this case
for each model variable individually in order to avoid com-
pensating effects of the perturbations. The three lines show
quadratic regressions for the three model variables (temper-
ature T2M, precipitation PR, cloud cover CLCT) based on
three simulations. The red dot shows the reference simula-
tion (REF) with standard parameter settings, while black
dots denote additional simulations with perturbed para-
meters (except for qi0, these are conducted at the upper
and lower bound of each parameter range).
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assumption of smoothness reduces the risk of overfitting and
allows to derive analytical solutions for optimal model para-
meters when using simple cost functions. Interactions of
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BELLPRAT ET AL.: OBJECTIVE CALIBRATION OF RCMS

Bl IP FR ME SC AL MD EA

T2M [K] / DJF

Bl IP FR ME SC AL MD EA

0.5

0.5

-2

PR [mm/d] / JJA

‘?/96:(\

N4

%
£y

%’b
\Z
S
z

[
%
5

)
-
2% %
Z

BI

IP FR ME SC AL MD EA

PR [mm/d] / DJF

Bl

IP FR ME SC AL MD EA

-15

D23115

CLCT [%]/ JJA

BI

IP FR ME SC AL MD EA

CLCT [%] / DJF

*j

BI

IP FR ME SC AL MD EA

Figure 3. Sensitivity of reference simulation REF with respect to parameter perturbations for (top) JJA
and (bottom) DJF. The vertical axes of each panel list the parameter perturbations. The effect of the perturba-
tions is shown by color shading, for seasonal and regional means of T2M, PR, and CLCT averaged over the
PRUDENCE regions on the horizontal axes. In the first row of each panel, the biases of the reference simulation
are shown. The subsequent rows show the perturbations when using either a minimum or maximum value for
single parameters, or when perturbing two parameters simultaneously. The subscripts of the experiment labels
in the vertical axis denote whether the lower (“I”’) or higher (“h”) bound of parameter has been chosen.

parameter perturbations are approximated by a non-linear term
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for each parameter pair. Perturbations of more than two para-
meters are therefore approximated with non-linear terms of all
possible pairs.
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Figure 4. Schematic figure for one pair-wise parameter
plane.

[21] As in Neelin et al. [2010] we use the following defi-
nition of a relative parameter input vector u« of the five
parameters selected (Table 1),

Poe =ty = Haer » 3)

where (1, contains the perturbed and g4, the default
parameter values. MM can consequently be expressed in the
vector notation as,

O* =B, + pla+ pulBu,. 4)

[22] Here the vector a contains the linear coefficients for
each parameter, and the matrix B contains the quadratic and
interaction terms in the diagonal and off-diagonal elements,
respectively. It is further assumed without loss of generality
that Bi,j = Bj,i'

[23] ©* and ®,.r denote a model field of the perturbation
and the reference simulation that is being used to derive the
model performance, for instance ®,..-can be the monthly 2 m
temperature averaged over the Mediterranean in the year
1994 using default parameter settings. For each these model
fields (1440 in total, see section 2.2) an independent meta-
model is regressed, which consequently allow to compute
the PS value for a given parameter input vector ji«.

[24] Performing the vector operations yields an alternative
notation of MM which illustrates the contribution of linear,
quadratic and interaction terms, here shown for two para-

meters ({1, fix2),

linear quadratic

—— —N—
¥ = Dy + g a1 + fy 202 + Ni,lBl,l + Ni,zBZZ
interaction

———
+ 2#*,1“*.231,2- (5)

[25] The minimum design points, also termed the saturated
design, necessary to analytically estimate the parameters of
MM (a and B) are illustrated for one pair-wise plane in
Figure 4. In each pairwise plane the center point is given by
the reference simulation (REF) with default parameter set-
tings, complemented with four axial points (circular symbols
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in Figure 4) which correspond to simulations with minimum
and maximum values of each parameter, keeping all other
parameters at their default values. For each parameter yi; the
two axial points can be used to estimate the linear term a;
and the quadratic term B;;. In order to solve the interaction
term B;; at least one corner point (triangular symbols in
Figure 4) of each pair-wise plane has to be simulated, where
two parameters are varied at the same time. Depending on
the number of parameters (N) the number of simulations
needed for the saturated design is given by 2N + M,
which corresponds to 20 simulations for five parameters.

[26] To estimate the interaction terms more accurately the
remaining three corner points have also been simulated for
this study as done in Neelin et al. [2010], which leads to
additional 30 simulations. Since the linear system is conse-
quently overdetermined, the interaction parameters are esti-
mated using least squares with the corresponding four corner
point simulations. Furthermore, one additional simulation
has been performed to cover the relatively wide distance of
the default value of rlam heat to its maximum value com-
pared to the distance to the minimum value. The additional
simulation is used to constrain the linear and quadratic term
of rlam_heat, again using least squares.

[27] The approach to predict the model quantities rather
than estimating the model performance directly, which
would require only one regression, is advantageous for
several reasons and has therefore also been applied in Neelin
et al. [2010]. First, as most performance metrics including
PS are a measure of a squared model error, the quadratic
transformation of the performance metric exerts higher non-
linearities in the performance space which are therefore
more difficult to regress. Second, predicting the model
quantities allows a more versatile application as different
performance metrics can be considered for a calibration and
the understanding of parameter perturbations and their
interactions is improved when remaining in a physical space.

[28] Once the metamodel MM has been fitted to the design
points, the CCLM skill of any parameter combination can be
estimated. In Figure 5 all pair-wise planes for the five para-
meters with contours of the performance score PS of the
planes are shown. Strong non-linearities emerge as e.g.
shown in the top right panel of #lam_heat and ¢i0. The col-
ored circles show the performance of the simulated design
points used to fit MM. The good agreement between all the
circle colors and the contours show that MM is able to model
the non-linearities of the performance hyper-plane, at least at
the design points. The panels also show that parameter values
with higher PS values than the reference, shown as black
dashed contour lines, occur within the bounds of the param-
eter ranges.

2.4.2. Accuracy of Metamodel

[29] In order to quantify the precision of MM to emulate
the output of the CCLM model, an additional independent
ensemble of simulations has been performed. The ensemble
consists of ten simulations with a space-filling Latin hyper-
cube design [McKay et al., 2000], in which the parameter
ranges are sampled with the same number of intervals as the
number of simulations performed (ten and of equal length
for this study). The parameter combinations are thereafter
randomly selected such that each combination uses a
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Figure 5. Pairwise planes of a five-dimensional parameter
space. The contour lines show the model performance on the
pair-wise planes estimated with the quadratic metamodel when
keeping all other parameters constant. The colored circles
show the simulated performance of the design points used to
fit the metamodel. The good agreement of the contours and
the circles highlight the capability of the metamodel to capture
non-linearities induced by parameter perturbations. The black
dashed contours indicates regions of improved model perfor-
mance compared to the reference simulation. The arrows point
from the default parameter values toward the optimal parame-
ter values identified when all five parameters are varied.

different value for each parameter. Latin hypercubes prove
to have optimal space-filling properties, which has in addi-
tion been optimized by maximizing the Euclidean distance
of the parameter combinations for this study.
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[30] In Figure 6 the precision of MM is illustrated by
comparing the simulated time series of spatial averages of all
independent ten simulations (4800 values for each model
variable) with the predicted values from the metamodel. The
dots lying on the black straight line show spatial averages
which are accurately reproduced by the metamodel whereas
the cloud of deviations from the line indicates the error of
MM, with a gray band showing the 95% percentile range of
the deviations. The fact that most of the predicted points lie
in a very narrow band for all model variables illustrates the
high precision of MM, which also supported by the R? statis-
tic. The individual panels of each model variable in addition
show that the simulated distributions of the three model vari-
ables are almost identically reproduced by the metamodel.

[31] To compare the imprecision of the metamodel with
the uncertainties considered in the denominator of perfor-
mance index (PI), we compute the standard deviations o,
of the errors when emulating the independent ensemble. It is
important to consider at this point that the metamodel MM is
fitted and compared to noisy simulations with a standard
deviation of o;,, which leads to an overestimation of the
imprecision when computing differences between these
noisy signals [Separovic et al., 2012]. Taking this overesti-
mation into account (see Appendix A) o, is on the median
level 0.14 K for T2M, 0.07 mm/d for PR, and 0.72% for
CLCT. In Figure 7 this additional uncertainty is compared to
the individual terms of PI The figure shows that the
imprecision of MM is much smaller than the observational
uncertainty and of about the same magnitude as the internal
variability for PR and CLCT. In order to quantify how the
imprecision of MM affects the estimation of P/ and hence
the performance score (PS), we perturb the time series of the
reference simulation with the imprecision (0,4, using
Gaussian white noise. The perturbed time series allow
thereafter estimating a resulting standard deviation of PS,
which amounts to about 0.005 - PS.

2.4.3. Parameter Interactions and Non-linearities

[32] The relative importance of linear and non-linear per-
turbations as well as the parameter interactions can be
studied with the metamodel by computing the corresponding
terms in (5) embraced by the brackets. The contribution of
these terms to the estimated model field is shown in Figure 8
for each parameter, with linear terms (ux ;a(i)) in the trans-
formed vector a*, non-linear terms (p5 ;B;;) in the diagonal
and interaction terms (244 ;44 iB; ;) in the off-diagonal of the
transformed matrix B*. The terms have been normalized by
the observed interannual variability o, in order to average
between all model variables. The figure shows that the
strongest sensitivities of CCLM originate from the pertur-
bations of the parameters rlam_heat and ¢i0, both having large
values for the linear and non-linear contributions. Generally the
linear and non-linear contributions are of a similar magnitude
for all parameters, demonstrating the importance to include
non-linear terms in the metamodel to estimate parameter per-
turbations. Strong non-linearities of parameter perturbations are
found by many studies and have implications when computing
ensemble means of perturbed physics ensembles or even mul-
timodel ensembles as discussed in Neelin et al. [2010].

[33] To assess how well the quadratic assumption captures
the non-linearity of the parameter space three additional
independent simulations between the design points of the
parameter axis of rlam_heat have been performed. The
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Figure 6. Performance of the metamodel to predict independent simulations. The three panels show for
each model variable the spatial means of ten independent simulations over the 8 subregions, as simulated
by the model and predicted by the meta model. The deviations of the black line with a slope of one show
the errors of the metamodel in either predicting too low or too high values of the respective model vari-
able. As a gray bar the 95% percentile of all points are shown, hence all points which lie outside of the
gray band correspond to only 5% of all data points (4800 in total). The narrow width of the 95% level
and the very high R? statistic for all variables illustrate the high accuracy of the metamodel. The additional
two black curves show the projections of the density of the data points to the two axes.

parameter rlam_heat has been chosen for this purpose. since
it is responsible for the strongest variability of the model and
has a strong non-linear term as shown in Figure 8. The
variations of 2 m temperature, precipitation and total cloud
cover due to changes of rlam_heat are shown in Figure 9.
The non-linearities induced by the parameter perturbations
are reproduced well by the metamodel, supporting the
assumption of a quadratic regression, in particular for pre-
cipitation and total cloud cover. The non-linearity of the 2 m
temperature seems to be of a slightly higher order than

Sources PI
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Figure 7. Comparison of the imprecision of the metamodel
(o, red column) to all sources of the performance index
(PI, blue columns) for T2M, PR and CLCT separately. The
individual columns show the median values of all terms,
whereas the error bars show the inter-quartile range derived
from all spatial means considered to compute P/ To com-
pare the terms for all three model variables all terms are
scaled to sum up to 1 for each model variable. The original
values are shown on top of each column with the dimension
given by each model variable in the horizontal axis. The fig-
ure shows that the imprecision of the metamodel is small
compared to the other sources of uncertainty in PL

modeled by the metamodel, which leads to a relative larger
error compared to the other two variables. A more flexible
regression might achieve higher accuracy in this case.

[34] For the remaining calibration parameters the non-
linearity of the model behavior is not explicitly analyzed, yet
the high accuracy of MM to reproduce independent simula-
tions supports the assumption that the model behavior is well
captured by a 2nd order polynomial. An initial screening of

a* B*
rootdp| 0.07 0 [003|001 003 [007 m,l:ac!ranc
uet| 02 0.06 |0.02 | 0.08 |0.07 Er
qioj 1.15 0 |003 [066 interaction
entr_sc [ 0.07 0 011
rlam_heat | 1.8 106
w@ &7 TeS

Figure 8. Linear, quadratic and interaction terms contribut-
ing to the estimation of CCLM with the metamodel when per-
turbing the calibration parameters as shown in equation (5).
In the vector a* (gray) the linear terms, in the diagonal of
the matrix B* (dark gray) the quadratic terms and in the off-
diagonal the interaction terms (light gray) of the metamodel
are shown. In order to average between the three model vari-
ables the terms are normalized by the interannual variability
of each variable. To compute the contribution of each term
the maximum bound of each parameter is used respectively.
The dominant parameters are ¢i0 and rlam_heat. The interac-
tion terms are relatively small compared to the linear and
non-linear terms ranging at a similar magnitude.
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Figure 9. Response of T2M, PR and CLCT to changes in rlam_heat shown as black dots averaged for all
spatial means. Red dots denote the design points used to fit the metamodel and red crosses show indepen-
dent simulations. The black line shows the quadratic metamodel. The deviation from the simulated points
is denoted with error bars expressing the average regression error. The internal variability of the model is
shown as gray shade. The quadratic regression holds well for PR and CLCT but shows some deficiencies

for T2M.

the smoothness of the RCM response to parameter perturba-
tions by performing two additional simulations between the
design points for each parameter axis would increase the
confidence that a quadratic model captures well the induced
perturbations. Such a screening would also support the
selection of model parameters used to calibrate the model but
would also add additional expenses to the tuning process.
[35] The interaction terms shown in the off-diagonal of
matrix B in Figure 8 are overall relatively small for the set of
parameters considered in this study. Highest interaction are
obtained between the parameter affecting the sub-grid scale
cloud formation uc1 and the threshold for ice auto-conversion
qi0, which both strongly affect the total cloud cover. The weak
interaction between the parameters may be a result of the fact
that every parameter originates from a different model
parametrization. Since the parameter interactions are weak
one might consider to omit these terms as their estimation is
relatively expensive in comparison to the estimation of the
linear and quadratic terms. Omitting the interaction terms
may therefore be reasonable in case of low computational

resources and little indication of strong parameter interactions.
In the case of the five parameters selected for this study, setting
the interactions terms to zero increases the error when esti-
mating the model fields on average by about 20% for T2M,
20% for PR and 100% for CLCT. This decrease of the accu-
racy of MM shows that at least part of the parameter interac-
tions are well captured by MM and that the interaction terms
are particularly important to model the cloud cover fields for
the parameters considered. The most important interaction is
between qi0 and ucl, which both affect cloud cover CLCT.

3. Model Calibration Results

[36] Having established a computationally cheap surrogate
for the RCM, we proceed with the calibration and present
the respective results in comparison to previous versions of
CCLM. We choose to sample the parameter space with a
Latin hypercube as done for the independent ensemble (see
section 2.4.2) and as also done in Gregoire et al. [2011], but
using a much larger number of one million parameter

Systematic calibration versus expert tuning

T T T T
—Reference

- - -Optimized
MM Range

MM Error

— Expert tuning

Relavtive densitiy

REF

21

b e e e Y ____OpT

| |
0.45 0.5 0.55 0.6

| |
0.65 0.7 0.75 0.8

PS

Figure 10. Calibration range estimated with the quadratic metamodel (MM) when computing one mil-
lion parameter combinations from a Latin hypercube experiment. The blue area shows the empirical prob-
ability density of the performance assessed by the metamodel. The solid black line corresponds to the
reference simulation (REF), which at the same time is the optimal simulation resulted from the expert tun-
ing. The black dashed line shows the optimized simulation (OPT), where the black arrow shows the
improvement achieved which corresponds to a reduction of the model error of about 7%. The two red
bands show the spread of two sub-samples (S1,S2) with a range of 0.005 - PS corresponding to the esti-
mated uncertainty (1o) of MM. The red lines denote the performance of the simulations of the expert-
tuned ensemble LONG.
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Figure 11. Empirical densities of the parameter values of the sub-samples S1 and S2 drawn from one
million parameter combinations shown in Figure 10. The individual parameter combinations within each sam-
ple perform equally well given the uncertainty of the metamodel in predicting the model performance. S1 con-
tains the best performing parameter combinations and the sub-sample S2 is drawn at level of the highest
density of the one million parameter combinations. The red line in each panel shows the default parameter
value and the black line shows the parameter combination of the best performing simulation (OPT).

combinations. Out of this large sample, optimal parameter
configurations can be identified which improve the model
performance with respect to a performance metric. The dis-
tribution of the model performance (PS) of the one million
parameter combinations is shown in Figure 10 as a blue area
spanning a wide range of PS values between 0.45 and 0.8.
The parameter combination leading to the highest model
performance is shown in Figure 4 as arrows pointing to the
optimal values with respect to the default values. An
experiment with the respective parameter combination has
then been carried out with CCLM for the entire validation
period from 1990 to 2000 model and referred to as OPT.

3.1.

[37] Determining a single parameter combination as a
calibration result is ambiguous as many other and in prin-
ciple substantially different parameter combinations may
perform almost equally well. Since the metamodel is
attached with an uncertainty in predicting the model per-
formance, the determined optimal parameter setting is only a
sample out of a distribution of parameter combinations with
indistinguishable model performance. It is hence more
meaningful to compare parameter distributions rather than
single values in order to show how the observations con-
strain the model parameters. We determine for this purpose
two sub-samples shown in Figure 10, one at the 99.9%
percentile of the distribution (S1) and another sub-sample at
level of the highest density of the million parameter com-
binations (S2). Both samples cover a range equal to the
uncertainty of the metamodel (PS).

[38] The empirical parameter densities of the sub-sample
containing the best performing parameter combinations are
shown in Figure 11 (top). The figure shows that given the
observations considered in 0.005 - PS the resistance for the
surface fluxes (rlam_heat) and the threshold for the ice auto-
conversion (qi0) are constrained toward slightly higher
values compared to the default values shown as a red line.
The calibration further yields a reduction of the sub-grid
cloud formation parameter (ucl) by about 30% and an

Constrained Model Parameters

overall increase of the root depths (rootdp) by about 30%.
The highest densities of the parameter values for the
entrainment for shallow convection (entr sc) lie at the
default level, yet the observations impose a weak constraint
on this parameter. Figure 11 (bottom) shows the sub-sample
drawn at the level where most of the parameter combinations
occur (cf. Figure 9) and where the parameter distributions
are therefore almost uniform. The differences between these
two sub-samples illustrate the effects of imposing an obser-
vational constraint on the parameter distributions, similar to
a Bayesian inference applied in many calibration procedures
[Villagran et al., 2008; Jarvinen et al., 2010; Annan and
Hargreaves, 2007]. Consequently the observationally con-
strained sub-sample allows drawing substantially different
parameter combinations for perturbed physics studies, which
are equally appropriate and agree well with the observations.

3.2. Objective Calibration Versus Expert Tuning

[39] The calibration procedure yields a reduction of the
model error of about 7% in PI with respect to the reference
simulation. Thus, due to the immanent uncertainty of the MM
(see Appendix A) the model performance (PS) of the optimal
simulation is slightly lower than expected from the MM alone.
The improvement of the model performance is achieved for
the 5 years used for the calibration (1994-1998) and also for
the remaining 5 independent years of the period 1990-2000
(omitting the year 1990 for spin-up reasons) for which both
OPT and REF have been simulated with identical initial con-
ditions. The only moderate improvement shows that the ref-
erence has previously already been expert tuned, as it is
common in practice. In order to compare the expert tuning
process against an objective calibration as presented for the
current study, we use an additional ensemble termed LONG,
which is described in detail in B11. The simulations of
ensemble LONG were performed after a new model version
release in order to test different physical parameter choices and
to find an optimal setting for the CORDEX simulations based
on subjective choices. Ensemble LONG is hence a typical
ensemble of opportunity commonly performed during model
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Figure 12. Calibration results of a perfect model experiment. The observations in the performance score
are for this purpose substituted with a CCLM simulation with known parameter configurations. For this
independent simulation parameter values at the center of the parameter ranges are chosen, shown as black
solid lines for each model parameter. The histograms in blue show the empirical densities of the parameter
configurations which reproduce most accurately the perfect model simulation, and the black dashed line
shows the optimal parameter configuration as derived with the calibration procedure.

development and therefore subject to substantial expert tuning.
The reference simulation used for the present study corre-
sponds to the optimal setting determined by expert tuning. In
Figure 10 the red lines show the individual simulations of
ensemble LONG labeled with an internal numbering system.
Interestingly, the reference simulation is also the best simula-
tion of ensemble LONG in terms of the quasi-objective skill
metric (PS), showing some coherence between subjective
evaluation of model performance and the applied skill metric.
Overall, the range sampled with MM is much wider than the
range covered by the ensemble LONG demonstrating the
higher potential of an objective calibration, which at the same
time is also much more efficient and transparent. Re-calibra-
tion as it is commonly done after e.g. resolution changes,
implementation of new processes and spatial transfer of the
geographical domain of an RCM, would therefore be greatly
facilitated using a framework as the one applied in this study.
Exploring the full performance range additionally allows to
intercompare different model versions more objectively, since
otherwise the intercomparison will implicitly be biased by
differences in expert tuning devoted to the two model versions.

3.3. Perfect Model Approach

[40] As an additional proof of the concept, a perfect model
approach is performed. Here the observational fields in PS are
substituted by a CCLM simulation with known parameter
configurations. The sigma terms in the denominator of PS are
for this purpose kept unchanged such that the same weighting
of the different model variables is used. As in Hauser et al.
[2012] we substitute the observations with an independent
simulation in which the parameter values are set at the center
value of all parameter uncertainties. In Figure 12 the calibration
results are illustrated in a similar manner as in Figure 11 where
the distributions of the parameter combinations which repro-
duce the perfect model simulations most accurately are shown.
The optimal simulation shown as a black dashed line finds
parameter values close to those chosen for the perfect model
simulation, with some inaccuracies for the parameters for which
the model is less sensitive (entr_sc, ucl and rootdp).

4. Conclusion

[41] We have presented an application of an objective
calibration for regional climate models using a quadratic
metamodel presented in Neelin et al. [2010]. Five parameters

which dominate important parametrized processes are cali-
brated using an objective framework presented in Bellprat
et al. [2012] and compared to the expert tuning process
common in climate modeling. The key steps of the calibra-
tion are: definition of a objective performance function,
selection of important model parameters for calibration,
construction of a cheap metamodel applicable to parameter
variations in a control integration, and sampling the param-
eter space to identify optimal parameter configurations.

[42] The main conclusions we draw from this study are
summarized in the following:

[43] 1. The applied framework for the objective calibration
of regional climate models is feasible in terms of computa-
tional demands and effective as verified with a perfect model
approach. To optimize five selected model parameters typi-
cally 20-50 simulations are needed, which corresponds to a
total of 100-250 model years.

[44] 2. Quadratic regressions capture the non-linearities
induced by parameter perturbations rather accurately and
thus allow the formulation and application of an efficient
metamodel.

[45] 3. The calibration allowed to reduce the model error
of an expert tuned model by about 7%. For the model under
consideration, the calibration yields slight changes in two
parameters (resistance used for the surface fluxes, and
threshold for ice auto-conversion) and significant changes in
three parameters (relating to roots depths, sub-grid cloud
formation, and entrainment in shallow convection).

[46] 4. The comparison of the objective calibration expert
tuning favors the use of the objective method, due to the
high efficiency, wider calibration range and transparency of
the method.

[47] 5. Providing observed lateral boundary conditions
allows to calibrate RCMs for short time periods (in our case
5 years), which is more efficient and potentially more robust
than the calibration of GCMs (which would require a much
longer integration time).

[48] 6. Intercomparison of different models as well as the
implementations of new model parameterization or the spa-
tial transfer of regional climate models for coming “global”
regional climate change efforts could be facilitated by
applying systematic methods for re-calibration.

[49] The calibration of physical parameterizations using
RCM simulations driven by re-analysis data at the lateral
boundaries has an important advantage compared to the
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calibration of a parameterization package in global climate
simulations: Constraining the large scale flow in the interior
of the RCM domain reduces the risk of error compensations
between resolved and parameterized processes. The objec-
tive calibration of parameterizations could hence be a
promising strategy to test and improve physical packages of
GCMs, in particular for unified model systems, where global
and regional model components share the same model
physics. We are aware that more flexible metamodels such
as Gaussian process models would probably increase the
accuracy of the metamodel as there is an indication that
parameter perturbations are not fully described with a second
order polynomial. However, as the accuracy of the meta-
model satisfies the needs of our calibration we think it is
reasonable to apply this simpler approach, which is easy to
handle and to reproduce. The presented methodology
therefore could potentially reach a wider application target-
ing the problem of parameter estimation for computationally
expensive climate models.

Appendix A: Imprecision of the Metamodel

[50] The metamodel is fitted to model output with a noise
exhibited by the internal variability with a standard deviation
(04, derived from an initial condition ensemble. The uncertainty
of the metamodel therefore consists of the imprecision of the
metamodel (0,,) and the internal variability (o;,) of the data
toward it is fitted. To estimate the imprecision of the meta-
model the difference between ten independent model reali-
zations and the predicted model fields of the metamodel is
computed. Assuming zero mean Gaussian statistics the vari-
ance of the differences computed (03 71,_inq) €quals the sum of
the variances of the independent realizations (o) and the
metamodel (o, + omy), hence

Tai—in = 0%+ (i + 0ar)’ (Al)
Solving for o, yields,
02s + 20000 + ZU?V - O'%JM_M =0, (A2)
which has the positive solution at,
omm = —0Oiv + 4/ Thvt—th — Ty (A3)

The Gaussian assumption is justified by the fact that spatial as
well as temporal averages are considered.
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