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Abstract

Various aspects of feature specific forecast verification of tropical cyclones (TCs) in the Atlantic basin
are the topic of this master thesis. The global atmospheric deterministic (operational) and probabilistic
(ensemble) model suite of the European Centre for Medium-Range Weather Forecasts (ECMWF) is as-
sessed. The forecast verification problem is approached from three different points of view, illustrating
the various stakeholder perspectives behind numerical weather prediction.

To measure the performance of the ECMWF TC ensemble forecasts, methods of traditional forecast
verification described in the literature and used by operational centres to assess the improvement of their
forecasting system are applied in a one-dimensional storm tracking approach. A statistical evaluation
of track and intensity (central pressure) forecasts of 29 hurricanes in the years 2005 to 2008 is carried
out. The limited sample size of events that can be assessed for the region of interest with a consistent
model setting is a general problem in this work. Nevertheless, some interesting tendencies and hypothe-
ses can be formulated. Positive skill is found for long forecast ranges in intensity and track. A mean
bias in central pressure of +21.7 hPa for the ensemble prediction system (EPS) and +15.3 hPa for the
operational forecast is detected. The magnitude of the average bias decreases with improvements in
resolution. For the current model set up, the mean bias is +18.1 hPa for the EPS and +11.3 hPa for the
operational forecast. Furthermore, the EPS is found to be overconfident. Various effects are studied, like
differences in forecasts over land or sea, as well as storm intensity influence on the forecast error statistics.

Questions concerning the ability of the ECMWF deterministic model to represent TC features in structure
and dynamics call for a multidimensional quality assessment framework. To this end, a novel verifica-
tion measure based on a series of feature specific components is adapted to tropical cyclones. Such an
object-based verification approach has a complementary potential to the storm tracking procedure and
is targeted at revealing specific problems and inabilities of the model to represent certain processes. The
proposed framework is flexible and can be adapted to user-specific needs. The resulting quality measure
is easy to communicate, while still containing a maximum of process-based information. As opposed to
traditional grid point based verification methods, it avoids double-penalty effects by clearly separating
the different properties into individual error components.

A further evaluation of ECMWF TC forecasts is performed, which focuses on the user needs. The insur-
ance sector is particularly interested in meteorological forecasts of TCs for their short range management
of potential losses. This knowledge advantage is important in the context of a tight business competition,
potentially very profitable market and high level exposure. Insurance loss predictions are performed in
collaboration with Swiss Re for 11 chosen case studies of particularly devastating events in the last four
hurricane seasons. The losses are generally strongly underestimated, when using the ECMWF raw data
as a meteorological input. Bias correction of pressure forecasts improve the results substantially. The
use of a probabilistic forecasting system for loss predictions, when compared to a single deterministic
forecast, helps to estimate the system inherent uncertainty of the meteorological input.

The complementary multi-viewpoint on the forecast verification problem of the ECMWF model with
respect to TCs is found to be very valuable for a holistic quality assessment. The adopted threefold
perspective leads not only to a better overview of the model performance, but also to an improvement of
the methods used to assess it.



Contents

Abstract I

1 Introduction 1

2 Theories and Concepts 4
2.1 Fundamentals of Tropical Cyclones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Tropical Cyclone Destructive Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Theoretical Aspects of Forecast Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Attributes of Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Definition of Accuracy, Association and Skill . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Quality Measures for Ensemble Forecasts . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.4 Object-Based Forecast Quality Verification . . . . . . . . . . . . . . . . . . . . . . 8

3 Data 9
3.1 ECMWF Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Data Assimilation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Deterministic Atmospheric Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Ensemble Prediction System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 Tropical Cyclone Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 NHC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Official Tropical Cyclone Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Observed Tropical Cyclone Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 CLIPER Tropical Cyclone Track Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 SHIFOR Tropical Cyclone Intensity Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Swiss Re Insurance Loss Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Case Studies 18
4.1 Tropical Cyclones in the Gulf of Mexico . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Hurricanes for the Storm Tracking Verification Approach . . . . . . . . . . . . . . . . . . 19
4.3 Hurricane Event for Object-Based Verification . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Hurricane Events for Loss Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Methodology 23
5.1 Methods of Traditional TC Forecast Verification . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Interpolation of the Observational Time Grid . . . . . . . . . . . . . . . . . . . . . 24
5.1.2 Definition of Positional Errors and Biases . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.3 Intensity Error and Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.4 Simple Skill Score for Track and Intensity Forecasts . . . . . . . . . . . . . . . . . 27
5.1.5 Ensemble Mean Error and Spread . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.6 Measure of Linear Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.7 Likelihood of Ensemble Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Object-Based Verification Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.1 Demands on the Novel Object-Based Verification Measure . . . . . . . . . . . . . . 28
5.2.2 Object Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.3 Definition of the Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Damage Assessment with CatMos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II



6 Results and Discussion 34
6.1 Storm Tracking Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.1 Accuracy and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.2 Statistical Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.3 Forecast Skill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.4 Correlation Analysis between Forecasts and Observations . . . . . . . . . . . . . . 41
6.1.5 Sensitivity Analysis of Forecast Errors . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1.6 Equal Likelihood Analysis of Ensemble Members . . . . . . . . . . . . . . . . . . . 44

6.2 Object-Based Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.1 Analysis as Verifying Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.2 Examples of Pressure and Wind Distributions in Objects . . . . . . . . . . . . . . 47
6.2.3 SAL Components for Hurricane Ike . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 User-Oriented Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.1 Assessment Framework for Loss Predictions . . . . . . . . . . . . . . . . . . . . . . 53
6.3.2 Loss Prediction Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Conclusions 56
7.1 ECMWF TC EPS Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2 Object-Based TC Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 User-Oriented Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3.1 User Needs and Specificities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3.2 Use of ECMWF Data for Insurance loss Predictions . . . . . . . . . . . . . . . . . 59

7.4 Multiple-Perspective Approach to Verification . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Appendix 60
A.1 Selected Hurricanes 2005-2008. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2 Errors and Biases in Track Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.3 Sensitivity Analysis Results for Forecast Errors . . . . . . . . . . . . . . . . . . . . . . . . 63

A.3.1 Sensitivity towards the Interpolation Method . . . . . . . . . . . . . . . . . . . . . 63
A.3.2 Sensitivity towards Hurricane Intensity and Landfalling . . . . . . . . . . . . . . . 64

A.4 Correlation Analysis for Central Pressure Error . . . . . . . . . . . . . . . . . . . . . . . . 67
A.5 Object-Based Verification for Hurricane Ike . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.6 Meteorological Forecast Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.7 Insurance Loss Predictions for Selected Case Studies . . . . . . . . . . . . . . . . . . . . . 78

References 84

Acknowledgements 89

III



List of Figures

3.1 Conceptual illustration of the 4D-VAR analysis done by ECMWF. . . . . . . . . . . . . . 10
3.2 Illustration of dependence of predictability upon starting position in phase space. . . . . . 11
3.3 TC tracking algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Example of a TC ensemble track forecast. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Relation between maximum wind and minimum central pressure using the Saffir-Simpson

scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Concept for assessing natural hazards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Hurricane track climatology of the years 2000 to 2007. . . . . . . . . . . . . . . . . . . . . 18
4.2 Hurricanes Katrina and Rita, season 2005 in the context of natural gas and oil platforms

in the Gulf of Mexico. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Hurricane Ike track and evolution of intensity. . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Selected Hurricanes in the time period 2005-2008. . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Forecast and observed track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Interpolation of the observed track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Initial positional errors for the selected hurricanes. . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Types of positional forecast errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Pressure threshold applied to identify TC objects for hurricane Ike ECMWF analysis and

forecasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 Object identification without area growth threshold. The colorbar indicates the pressure

scale in hPa. The example shows hurricane Ike shortly after landfall. . . . . . . . . . . . . 29
5.7 Area of the identified objects for hurricane Ike ECMWF analysis and forecasts. . . . . . 30
5.8 IKE and maximum wind of the identified objects for hurricane Ike ECMWF analysis and

forecasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.9 Methods of insurance loss predictions using ECMWF TC ensemble forecasts. . . . . . . . 33

6.1 Direct position error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Sample size of forecasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Bias in along and cross track components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Central pressure error and bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5 Central pressure error and bias after calibration. . . . . . . . . . . . . . . . . . . . . . . . 39
6.6 Underdispersivity in track components and intensity forecasts. . . . . . . . . . . . . . . . 39
6.7 Skill of the position forecast by ECMWF and NHC. . . . . . . . . . . . . . . . . . . . . . 40
6.8 Skill of the intensity forecast by ECMWF and NHC. . . . . . . . . . . . . . . . . . . . . . 40
6.9 Correlation analysis for latitude, longitude, central pressure and central pressure change. . 41
6.10 Sample sizes for investigated years, sensitivity towards ECMWF model resolution change

in February 2006, land/sea effects and the intensity/landfalling groups. . . . . . . . . . . . 42
6.11 Direct position error for different model resolutions. . . . . . . . . . . . . . . . . . . . . . 43
6.12 Error in central pressure forecast, difference potentially due to ECMWF model resolution

change in February 2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.13 Error in track forecast, direct position error, separated into land and sea locations of the

cyclone over land/sea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.14 Error in central pressure forecast, sensitivity towards location over land/sea. . . . . . . . . 44
6.15 Likelihood of ensemble members in ECMWF track ensemble forecasts. . . . . . . . . . . . 45
6.16 Likelihood of ensemble members in ECMWF central pressure ensemble forecasts. . . . . . 45

IV



6.17 Track of hurricane Ike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.18 Analysis minimum pressure compared to NHC minimum pressure. . . . . . . . . . . . . . 47
6.19 Pressure and wind distribution in identified objects for the 08.09.2008 00:00 UTC. . . . . 48
6.20 Pressure and wind distribution in identified objects for the 11.09.2008 12:00 UTC. . . . . 49
6.21 Pressure and wind distribution in identified objects for the 13.09.2008 12:00 UTC. . . . . 49
6.22 SAL summary for hurricane Ike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.23 Empirical cumulative distribution functions (cdf) for the error components of the SAL

quality measure for hurricane Ike. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.24 Error components of the SAL quality measure for hurricane Ike. . . . . . . . . . . . . . . 52

A.1 Selected hurricanes of the seasons 2005 to 2008. . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2 Along and cross track position error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.3 Longitudinal and latitudinal track position error. . . . . . . . . . . . . . . . . . . . . . . . 62
A.4 Bias in longitudinal and latitudinal track components. . . . . . . . . . . . . . . . . . . . . 62
A.5 Sample size dependence on interpolation method for hurricane Ike (2008). . . . . . . . . . 63
A.6 Error in direct position and central pressure, sensitivity towards interpolation method for

hurricane Ike (2008). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.7 Positional errors for different hurricane groups. . . . . . . . . . . . . . . . . . . . . . . . . 65
A.8 Comparison of CLIPER5 and NHC official forecast mean track error and standard devia-

tion for the different hurricane groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.9 Comparison of the ECMWF ensemble mean central pressure error and standard deviation

for different hurricane groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.10 Comparison of (D)SHIFOR5 and NHC official forecast mean pressure error and standard

deviation for the different hurricane groups. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.11 CPE dependence on forecast and observed pressure. . . . . . . . . . . . . . . . . . . . . . 68
A.12 CPE dependence on forecast and observed central pressure change. . . . . . . . . . . . . . 69
A.13 Dependence of initial central pressure error on pressure change between the previous and

the present observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.14 Difference in position of the minimum central pressure between the ECMWF analysis field

and NHC best track data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.15 Central Pressure difference between NHC best track data and ECMWF analysis. . . . . . 70
A.16 Position and central pressure difference between NHC best track data and ECMWF anal-

ysis and forecasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.17 ECMWF ensemble track and central pressure forecasts for hurricane Ike. . . . . . . . . . . 71
A.18 ECMWF ensemble track and central pressure forecasts for hurricane Katrina. . . . . . . . 72
A.19 ECMWF ensemble track and central pressure forecasts for hurricane Gustav. . . . . . . . 73
A.20 ECMWF ensemble track and central pressure forecasts for hurricane Wilma. . . . . . . . 74
A.21 ECMWF ensemble track and central pressure forecasts for hurricane Rita. . . . . . . . . . 75
A.22 ECMWF ensemble track forecasts for hurricane Ike and Katrina. . . . . . . . . . . . . . . 76
A.23 ECMWF ensemble track forecasts for hurricane Gustav, Wilma and Rita. . . . . . . . . . 77
A.24 Observed losses and wind footprint for hurricane Katrina. . . . . . . . . . . . . . . . . . . 78
A.25 Loss predictions for hurricane Ike using biased and bias corrected pressure forecasts. . . . 79
A.26 Loss predictions for hurricane Katrina for the indicated forecast date and time. . . . . . 80
A.27 Loss predictions for hurricane Gustav. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.28 Loss predictions for hurricane Wilma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.29 Loss predictions for hurricane Rita. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

V



List of Tables

2.1 Saffir-Simpson scale categories of hurricane destructiveness. . . . . . . . . . . . . . . . . . 5

4.1 Hurricane groups for investigation of forecast quality dependence on landfalling and intensity. 20
4.3 Landfalling dates and times for the hurricanes selected for loss predictions . . . . . . . . . 21

6.1 Summary of properties of hurricane Ike TC objects for the chosen dates. . . . . . . . . . . 48
6.3 Summary of loss prediction performance by NHC, ECMWF TC EPS mean error, median

error, the ECMWF operational run as well as the control run. . . . . . . . . . . . . . . . . 54
6.5 Summary of performance in loss predictions by the ECMWF TC EPS. . . . . . . . . . . . 55

A.1 Properties of selected hurricanes of the years 2005 to 2008 for the storm tracking verification
of the ECMWF TC EPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

VI



List of Abbreviations

ACE accumulated cyclone energy
CatMos catastrophe loss modelling system of Swiss Re
cdf cumulative distribution function
CLIPER Climatology and persistence track forecasting system
COSMO MeteoSwiss operational local area numerical weather prediction system
CTL ECMWF control run in the EPS (low) resolution deterministic forecast
DSHIFOR SHIFOR with decay component for TCs over land
(D)SHIFOR SHIFOR error data for hurricane events in 2005, DSHIFOR for events in 2006-2008
ECMWF European Center for Medium-Range Weather Forecasts
EIA U.S. Energy Information Administration
ENS Ensemble forecast
EPS Ensemble Prediction System
ETHZ Swiss Federal Institute of Technology in Zürich
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Chapter 1

Introduction

Tropical cyclones (TC) are amongst the most impressive weather systems of Earth’s atmosphere, not
only as extraordinary natural phenomenon but also in terms of damage they can cause. In the USA, in
the region of the Caribbean Sea as well as in many Asian countries, TCs are ranked as the costliest and
deadliest natural disaster. Damage figures from TCs have been increasing within the last few decades.
Climate change might have played a role in this trend. The latest IPCC (Intergovernmental Panel on
Climate Change) assessment report (IPCC, 2007) mentions that there is observational evidence for an
upward trend in intense TC activity in the North Atlantic and quantifies the probability that there has
been an increase in strong hurricanes since 1970 in some regions as likely ( 66% chance). Furthermore,
the growth of both population and wealth have made the local economies more vulnerable to natural
disasters such as TCs (Pielke and Landsea, 1998).

Costs of weather-related natural disasters in general have been rising in recent years. However, the
capacity of the insurance industry to absorb the induced losses has been declining in the time window
1980-2004, shifting more of the burden to governments and individuals (Mills, 2005). Changes in nature,
magnitude, timing, duration or location of hazards challenge the insurance system, which bears great
responsibility in elaborating proactive measures in order to face these extreme events that individuals
cannot manage independently.

In order to assess natural hazard risks, when facing rapid global changes such as climate change, tech-
niques like probabilistic catastrophe loss modelling have been developed and are widely accepted as an
appropriate way to manage catastrophe risk (RMS, 2008). Instead of relying only on historical event
frequencies and impacts to estimate future potential losses, probabilistic risk assessment models simulate
many physically realistic, probabilistic scenarios, thus extending historical datasets. These comprehensive
probabilistic event sets provide a reliable picture of exposure of a certain region to natural hazard risks.
In addition to risk and vulnerability characterisation, real-time prediction and early warning systems are
needed in order to face an imminent hazard and minimise losses (Hoff et al., 2003). For the insurance
industry, early loss estimates are important in order to allocate capital and be prepared for last-minute
trade of risk transfer solutions. Even more so, in the case of high impact events, like TCs, which have
potential to cause damage as high as the Gross Domestic Product (GDP) of certain regions.

The performance in forecasting such extreme weather has improved significantly in the last few years with
the continuously evolving computational possibilities. The European Centre for Medium-Range Weather
Forecasts (ECMWF) computes twice a day 51 so-called ensemble predictions of the global atmospheric
state as a part of its operative forecasting system. These ensembles represent atmospheric conditions,
which are considered to be feasible given the uncertainty in the initial conditions and the uncertainty in
the numerical and physical model. The first uncertainty stems from the limited number of observations
of the variables and their representativeness, the latter from limited model grid and resulting sub-grid
parametrisations. The motivation for the set up of an ensemble prediction system (EPS) is in essence
to gain information in advance about the error of a forecast. The ensemble of forecasts can thus be
interpreted as a probabilistic prediction of future weather (Woods, 2006) and can be used as a quantita-
tive tool for risk assessment. According to ECMWF, the potential economic value of the EPS is much
higher, than that of a forecasting system based only on a single deterministic prediction (Richardson,
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2000). Indeed, forecast value depends not only on the quality of the forecasting system but also on the
weather sensitivity of the user (Jolliffe and Stephenson, 2003). Thus, conceptually, the main benefit of
probabilistic forecasts over deterministic ones lies in its adaptability to the specific needs of the different
users.

Forecast verification implies testing the implicitly made hypothesis that a forecast of a future state using
a certain model provides an added value compared to the case, in which no information is available.
Weather forecast verification was first introduced in a precise and formal framework by Finley (1884)
in the end of the 19th century, a few decades after the beginning of operational weather forecasting in
the USA and Europe. After half a century of very modest activity in this research field the number of
publications on the topic rapidly increased with the advent in the 1950s of numerical weather forecasting
and the subsequent multiplication of available products (Muller, 1944a,b,c). Brier and Allen (1951) set
up a three-way classification of the motivations behind forecast verification:

• Administrative reason: illustrates the need for a numerical measure of the quality of forecasts in
order to assess the improvement of the forecasting system over time, justifying funding for research,
equipment and providing a basis for the elaboration of resource investment strategies.

• Scientific reason: in order to improve the forecasting model in its structure and formulation, the
strengths and weaknesses of the forecasts have to be analysed. Forecast verification can also lead
to scientific questioning about the underlying physical processes, which if investigated, may lead to
an improved understanding and thus in turn better models.

• Economic reason: includes the user-side point of view and the need for tailored verification
schemes, aiming at satisfying specific interests and at simplicity in communication.

The selected verification scheme should be informative and specific in answering the question of interest
(Jolliffe and Stephenson, 2003). The three aims of forecast verification formulated by Brier and Allen
(1951) will all be explored in this work. The point of view of operational forecasting is adopted in the
part on traditional forecast verification of the ECMWF TC ensemble forecasting system using a storm
tracking approach. An object-based verification technique is proposed that can be attributed to the
side of a scientific investigation of the performance of the model in representing the weather system. A
user-oriented assessment is undertaken with the insurance loss predictions using ECMWF data. For each
of these TC verification aspects specific questions were formulated:

1. Storm tracking verification:
How well does the ECMWF TC ensemble forecasting system reproduce the observed data in terms
of track and intensity? Can the model capture the magnitude of the system inherent uncertainty?

2. Object-based verification:
How could we assess the model in a way that might answer following questions: How does a TC look

like in a global atmospheric high resolution deterministic model like ECMWF? Which properties are

represented? What are the reasons for potential inabilities to render the feature accurately?

3. User-oriented verification:
What is the performance of the ECMWF TC ensemble forecasting system, when it is coupled to a
catastrophe modelling system in order to estimate insurance losses? What is the added value for a
reinsurance company like Swiss Re to use such a system instead of a deterministic forecast like the
one provided for free by the U.S. national warning centre (National Hurricane Center, NHC)?

In this master thesis the traditional question of the benefit of ensembles, when compared to deterministic
predictions is raised in the specific case of TC forecasts used for insurance loss predictions. The primary
aim of this project is to evaluate the possibility of using ECMWF TC ensemble forecasts for predictions
of induced damages and insured losses. The added value of using such a system instead of a deterministic
forecast is characterised. The focus is laid upon northern Atlantic hurricanes of the last couple of years
(2005-2008). In a first step the ECMWF TC ensemble prediction system is compared to observations of
hurricanes for a set of recent events. For this purpose traditional verification measures are used and the
model is assessed in a storm tracking framework. In a second step a new object-based quality measure
is proposed, which aims at pointing out structural and dynamical deficiencies of TC representation in
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the ECMWF model. A quality measure of this kind is desirable for a more holistic description of model
performance. Finally, the quality of the resulting insurance loss predictions is assessed using a chain
modelling approach.

In the following chapter, some theoretical and fundamental aspects of the physical structure and the
dynamics of TCs are presented. A review of possible ways to quantify the destructive potential of TCs
is made and the main attributes of forecasts are defined. Then, the thematic of forecast verification is
addressed. Chapter 3 presents the different ECMWF forecasting systems, of which the output data is
used in this work. The observational and forecast data from the U.S. National Hurricane Center (NHC) is
described and the climatological and persistence track and intensity benchmark forecasts are introduced.
A description of the damage assessment model CatMos from Swiss Re closes the data chapter. In chapter
4 the chosen hurricane events for the different approaches are introduced. In chapter 5, the storm tracking
comparison procedure is explained, the framework of the object-based verification is presented and the
methods for loss modelling with Swiss Re’s catastrophe loss modelling system using ECMWF forecasts as
an input are described. Chapter 6 relates and discusses the results. Finally, in chapter 7 the conclusions
are drawn.

3



Chapter 2

Theories and Concepts

2.1 Fundamentals of Tropical Cyclones

TCs can be defined by a closed circulation around a centre of low pressure, which is induced by latent heat
release in the core (Emanuel, 1991). This driving mechanism represents the main difference with extrat-
ropical cyclones, which draw their energy from the meridional temperature gradient (Wallace and Hobbs,
2006). TCs have an approximately symmetric structure with a wind reinforcement of the right side of
their track in the Northern Hemisphere (Shapiro, 1983). The centre of the TC is characterised by a cloud-
free warm core eye, in which the air descends. Convection is induced by solar heating and evaporation of
ocean air. Thus air convergence takes place at the surface and divergence at the top, on altitudes usually
slightly above 10 km (Emanuel, 2009). The centre of the storm is surrounded by a rapidly rotating wall
of clouds. This part of the TC causes most wind damages. Behind the eyewall successive Cumulonim-
bus towers, merging together into a Cirrus overcast at high altitudes, induce heavy rain at the earth’s
surface (Houze, 1993). These so called rain bands are separated by gaps with only light rain and no wind.

The extremely low sea level pressure in the centre of the storm is due to the low density of the (warm)
overlying air (Wallace and Hobbs, 2006). The azimuthal wind field is in cyclostrophic balance, the cen-
tripetal acceleration of the circulation around the low pressure centre being several orders of magnitude
larger than the Coriolis force.

The dimensions of TCs are very variable. A large storm is not necessarily indicative of high intensity.
But its size still has an influence on the observed damage as will be seen in section 2.2. The diameter of
a storm being identified by the extent of the upper level Cirrus cloud cover can vary between 50 km and
1200 km. The size of the eye can amount up to 200 km in diameter (Merill, 1984).

TC naming is closely related to the intensity classification. TCs found in the North Atlantic with
wind speeds exceeding 120 km/h are called hurricanes and given a proper name from pre-existing lists,
alphabetically orderer and alternating feminine and masculine forenames. This practice is primarily done
for warning purposes, in order to avoid confusion between basins if different storms occur simultaneously
(http://www.nhc.noaa.gov).

There are 6 main formation ingredients for TCs (Lohmann, 2009):

1. Warm ocean water with temperatures above 27◦C

2. Potentially unstable atmosphere to allow moist convection

3. Moist mid troposphere

4. Latitudes equatorwards from the baroclinic zone and 5◦C polewards in order to have a strong
enough Coriolis effect to induce cyclonic circulation

5. Pre-existing disturbance with sufficient vorticity and convergence

6. Low vertical shear in wind
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Dissipation occurs if any of the above conditions is not fulfilled any more, in particular due to transition
into the extratropics, landfall, stationarity over the ocean inducing significant water cooling, too cold
waters or if the cyclone enters a zone with strong vertical wind shear.

2.2 Tropical Cyclone Destructive Potential

The Saffir-Simpson hurricane damage potential scale is the official scale used by the U.S. National Weather
Service (NWS) to rate the size, intensity and destructive potential of North Atlantic hurricanes (Long-
shore, 2008). Developed by the construction engineer Robert Simpson, who was director of the NHC
at that time and the meteorologist Herbert Saffir in the 1970ties, this scale is used for sustained winds
above the uppermost Beaufort scale force (> 120 km/h), thus exceeding intensities reached by simple
tropical depressions and tropical storms. The Saffir-Simpson scale was primarily designed for the NWS
to alert civil defence agencies to the destructive potential of a hurricane that lies within 72h of landfall
(Longshore, 2008). It is a simple scale, which is easy to communicate to the general public as can be seen
from its definition summarised in table 2.1.

Table 2.1: Saffir-Simpson scale categories of hurricane destructiveness. Adapted from Simpson and Riehl (1981).

Cat. Pressure at center [hPa] Wind [km/h] Surge [m] Damage

1 above 980 120 - 153 1.2 - 1.5 Minimal

2 965 - 980 154 - 177 1.8 - 2.4 Moderate

3 945 - 965 178 - 209 2.7 - 3.7 Extensive

4 920 - 945 210 - 249 4.0 - 5.5 Extreme

5 below 920 210 - 249 5.5 + Catastrophic

As a direct consequence of its generality, simplicity and conciseness its adequacy to describe destructive
power of a hurricane has been intensely discussed in the last few years. Suggestions for new warning
measures emerged in the last few years like the integrated kinetic energy (IKE) (Powell and Reinhold,
2007), the accumulated cyclone energy ACE (Bell et al., 2000), Emanuel (2005)’s index of the potential
destructiveness of hurricanes based on total dissipation of power integrated over the lifetime of the cyclone
as well as hurricane intensity and hazard indices (Kantha, 2006). One of the fundamental critiques on the
Saffir-Simpson scale is that it only depends on a punctual measure of intensity and gives no information
about the storm size (Powell and Reinhold, 2007). The storm development as well as its size are however
highly relevant for estimating the storm’s damage potential. Another point of critique is that two very
different kinds of damage are confounded in one single scale, namely the wind induced damage and the one
induced by storm surge. This problem became very pronounced in the case of last year’s hurricane Ike. At
the time of landfall the hurricane winds were only Category 2, however the storm surge in Galveston was
equivalent to a Category 4 to 5. Following a report by the NHC (NHC, 2009) many residents would not
evacuate, because the storm was only ranked as a Category 2-3. Other similar examples are mentioned
and based on these, the NHC experimentally changed the Saffir-Simpson scale definition for the hurricane
season 2009, removing the storm surge effects. Problems of this type illustrate the difficulty to set up a
scale that is scientifically consistent, easy to communicate and does not cause any problems of liability.
Kinetic energy is relevant to the wind destructive potential, because it scales with the wind load acting on
a structure (ASCE, 2005) as well as with the storm surge and waves generated by the shear stress of the
wind on the ocean surface (Powell and Reinhold, 2007). Mahendran (1998) found that the damage induce
by TC winds depended on the radius of maximum wind, the storm translation speed, central pressure
and surface maximum wind gust. Liu et al. (2007) showed that hurricane-induced wave fields are heavily
influenced by storm asymmetry, translation speed, intensity as well as background winds. Li and Rego
(2009) identified the storm’s forward motion as the most important factor in the wave generation.
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The main physical parameters that are known from the above literature to influence TC induced damage
may be summarised in a local maximum intensity information, translational speed and an indication
on the surface wind structure. Integrated kinetic energy depends on both, the surface wind maximum
and on the surface wind structure. The translation speed of the storm is however not explicitly present.
Powell and Reinhold (2007) propose the following formulation for the integrated kinetic energy IKE:

IKE =

∫

V

1

2
ρaU2dV (2.1)

where V volume of object with 1m thickness
at 10 m above ground (sea) [m3]

ρa density of air (∼ 1 kg/m3)
U wind velocity at 10 m above ground (sea) [m/s]

In Powell and Reinhold (2007) IKE is computed from a gridded wind field over a storm-centred 8◦ lati-
tude/longitude domain, extending 1 m in the vertical and centred at the 10 m official wind measurement
level. In Maclay et al. (2008) kinetic energy is integrated over a disk with constant radius and depth.
Thus computed values are dependent on the employed method. Usually values of the order of magnitude
of 1 TJ are obtained for hurricanes.

The destructive effect of a wind load acting on a structure is a highly non stationary process. Once a
part of the building envelope fails the damage can rapidly increase. Especially when the storm intensity
is not exceptionally high, the duration of wind loads and thus the translation speed of the storm become
important. In order to account for this Powell and Reinhold (2007) propose to segregate IKE into low,
moderate and high wind speed ranges and multiply these by a representative damage factor.

The IKE concept is difficult to implement as a warning scale, especially because kinetic energy is not
a conservative property of the storm (Simpson and Saffir, 2007) and thus may fail to predict rapid and
significant changes. However, it is very well suited for a loss-oriented verification procedure, as it relates
the processes generated by dynamic sources to the character, magnitude and scale of the wind and wave
damage.

2.3 Theoretical Aspects of Forecast Verification

2.3.1 Attributes of Forecasts

Until the mid-1980ties the conventional approach to forecast verification involved the reduction of in-
formation from a set of forecasts and observations into a number of measures (Jolliffe and Stephenson,
2003). The forecasting performance was evaluated based on the correspondence between forecasts and
observations. The focus was laid on general aspects of forecast quality like accuracy, association or skill.
This ”measure-oriented” verification approach lead to the development of a high variety of scores like the
root mean square error in the case of continuous variables, the hit rate, the false alarm rate, the Heidke
skill score in the case of binary events (based on occurrence/non-occurrence or obtained by applying a
threshold to continuous variables). All these scores were plausible, however all had some weaknesses.
Murphy and Winkler (1987) proposed a general framework for so called diagnostic verification involving
the use of the joint distribution of forecasts and observations. This framework provided a basic theoret-
ical background to guide the selection of appropriate measures for particular verification problems and
prepared the ground for systematic discussions on the properties of particular measures.

The ”distribution oriented approach” sees forecast verification as the process of assessing the statisti-
cal characteristics of the joint distributions of forecasts and observations. In the case of probabilistic
forecasts four main attributes can be defined following Murphy (1973). Probability forecasts should be
able to reliably distinguish among situations for which the probability distribution functions (pdf) of the
corresponding verifying observation are distinctly different.
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In other words, a probabilistic forecasting system is reliable if the conditional pdf of the verifying
observations p(x|p̂f = q) given any forecast pdf q(x̂) is equal to the latter pdf (Jolliffe and Stephenson,
2003):

p(x|p̂f = q) = q(x̂) ∀ q(x̂) (2.2)

A system is said to have resolution if it is able to resolve the forecast problem in a probabilistic sense
(Jolliffe and Stephenson, 2003). If resolution describes the variability of the observed pdf associated
with different forecast scenarios around the climatological pdf, sharpness measures the variability of
the forecast pdf around the climatological pdf. In the case of a perfectly reliable forecast, the forecast
probability values are identical to the observed frequencies. Thus, in the latter case, sharpness and res-
olution describe the same forecast property. A fourth characteristic, is uncertainty of the underlying
observations (i.e. the mean spread of the observation marginal distribution). This is an important aspect
of a forecasting system, over which, however, the forecaster has no control.

All the above mentioned properties of forecasts cannot be verified by one single measure. Different mea-
sures, emphasising different aspects and attributes of forecast performance should be employed (Murphy
and Winkler, 1987). In this study, only verification measures for continuous variables and summary
statistics were applied. Verification scores using binary events definitions (i.e. reliability diagram, Brier
skill score) or verification based on decision probability thresholds were not used here. This choice is
partly due to time limits and partly because decision related verification techniques are based on much
preciser situations (e.g. the definition of coastal breakpoints, meaning points on the coast at which the
probability of landfalling is computed) as in Santos et al. (2009)) than the one defined as being the scope
of this study, namely to assess ECMWF TC ensemble forecasts in the North Atlantic region.

2.3.2 Definition of Accuracy, Association and Skill

A verification score measures the relative quality of different forecasts. It is thus a function of the forecast
and the observed value. Accuracy is a measure of correspondence between individual pairs of forecasts
and observations. The mean absolute error is an example of a measure of accuracy. It can be summarised
by the average distance of forecasts and observations, characterising the magnitude of the random error
made by the forecasting system and depends on the bias, the resolution and uncertainty attributes (see
section 2.3.1). The bias is ameasure of reliability and represents a systematic type of error made by the
forecasting system. Association is the overall strength of the relationship between pairs of forecasts and
observations. A measure of linear association is given by the correlation coefficient.

The quantification of the relative forecast quality (skill) involves the definition of an unskillful benchmark
forecast. Climatology, persistence, a random walk forecast or a combination of these is generally used
as a reference. Such a comparison helps to take into account the non-stationarities in the system to be
forecast and can for example explain improved scores during specific periods, when the atmosphere is
in a more persistent state (Jolliffe and Stephenson, 2003). A skill score allows to compare an absolute
forecast quality score (e.g. measure of accuracy) with the score of a trivial forecast and is usually based
on the following expression:

SS =
Sc − Sc0

Sc1 − Sc0
(2.3)

where SS skill score of the forecast
Sc0 score of the benchmark forecast
Sc1 best possible score
Sc score of the model to be verified

Generally skill scores lie in the range 0 to 1, with 1 being the best score.
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2.3.3 Quality Measures for Ensemble Forecasts

One way to measure the reliability (or statistical consistency) of an ensemble forecast is to compute the
ensemble mean error m and spread s. The verifying analysis is statistically indistinguishable from the
ensemble members if the ensemble mean error is equal to the mean distance of the individual members
from their mean (i.e. spread or ensemble standard deviation, Buizza (1997) ). For perfectly reliable
forecasting systems, spread can also be considered as a measure of resolution (Jolliffe and Stephenson,
2003). The following terminology is used if the mean error and the spread are not equivalent:

m > s → EPS is underdisperdive, the model is overconfident
m < s → EPS is overdisperdive, the model is underconfident

This property ensures that on average the range of forecast values given by the ensemble members contain
the observation.

The ECMWF TC forecasting system uses the same technique for generating each member of the ensemble
(same NWP model and same initial perturbation technique). The ensemble members are thus assumed
to be equally likely and can be considered independent realisation of the same random process. This
assumption has to be verified in order to be able to define forecast probabilities for specific values as for
example if strike probabilities are used or if predictions of insurance loss distributions are computed.

2.3.4 Object-Based Forecast Quality Verification

Object-based verification has emerged in the last few decades as a means of better capturing deficiencies of
numerical weather predication (NWP) models in representing small scale (< 100 km) complex structures.
An overview of the literature of the last few years can be found in Wernli et al. (2008). This new approach,
which took on various forms, emerged from the necessity to address the ”double penalty” problem of grid-
point based error measures. The latter would not reward a perfect forecast of a precipitation intensity
pattern, which is slightly shifted in terms of location. The aim of the object-based approach is to identify
the nature and scale of the error through a more differentiated rating scheme. It can be seen as a way of
getting closer to the subjective visual judgement of forecast accuracy, without loosing the quantitative
and summarising aspect of a numerical score.
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TC track and intensity forecasts are provided by many different institutions, which use different types
of models. These models vary in their complexity, the physical and mathematical principles, on which
they are based and the computational time they require. A complex numerical model (e.g. numerical
weather prediction (NWP) model) is computationally more expensive than a simple linear regression
between storm behaviour and certain relevant atmospheric variables. An overview of different models for
TC forecasting available today and used at the NHC is given in Rhome (2007).

In this study, outputs of one of the most sophisticated and computationally expensive global models are
used, namely the ones from the ECMWF atmospheric model. From a scientific point of view, this model
offers the possibility to investigate the specific TC forecasting system in the framework of the synoptic
atmospheric dynamics, in which it is embedded. From a more applied perspective, a reinsurance com-
pany like Swiss Re is interested in medium-range (3-4 days) forecasts of intensity and track, including an
estimation of the uncertainty of the forecasts. The ECMWF TC ensemble prediction system suits these
requirements very well.

Furthermore, ECMWF has been a reliable modelling partner for ETH since years. MeteoSwiss, which
is a close research associate of the Institute for Atmospheric and Climate Sciences at ETH, collaborates
with ECMWF and nests its regional COSMO model into the ECMWF prediction. The advantage of a
global model over a nested limited area model of the tropical Atlantic region is firstly the availability of
good quality ensemble forecasts and secondly the use of one and the same model formulation for different
regions in the world. The second argument is not only important from a global company point of view.
This also allows comparative studies on model performance in different regions to be done and may pro-
vide interesting hints of differences in the dynamics.

3.1 European Centre for Medium-Range Weather Forecasts
(ECMWF) Data

The European Centre for Medium-Range Weather Forecasts (ECMWF) as an international organisation
supported by many European states, provides state-of-the-art weather forecast data and products. Details
on the centre’s history can be found in Woods (2006), which depicts an interesting summary of the
political backgrounds of the centre’s foundation and its activity. In this project different ECMWF
products were used. The ECMWF TC ensemble forecasts were verified against NHC best track data (see
section 2.2.2 below). The ECMWF TC ensemble forecasts consist of both deterministic and probabilistic
information on movement and intensity of individual TCs around the world (ECMWF1). The same
forecasting system was used as an input for insurance loss estimations. For the object-based forecast
verification, deterministic forecast fields were used and the analysis fields were selected as verifying
observations.

1http://www.ecmwf.int/services/dissemination/3.1/TROPICAL_CYCLONE_trajectory_forecast_products.html#

pgfId-385560
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3.1.1 Data Assimilation System

Figure 3.1: Conceptual illustration of the 4D-VAR
analysis done by ECMWF (Source: Persson and Grazzini
(2005)).

Global data assimilation systems such as the one
ECMWF operates, use a large amount of data
from various instruments and observation times
and interpolate them onto a regular grid applying
an automatic objective analysis. In order to ob-
tain a spatially and temporally coherent descrip-
tion of the actual state of the atmosphere, they
run a general circulation model (GCM) in hindcast
mode (Schär, 2008). The ECMWF data assimila-
tion system is based on a 4D VAR data initiali-
sation technique, which allows the assimilation of
observations that are distributed over a given time
interval (e.g. satellite data which are not available
at synoptic times) as can be seen in figure 3.1.
The initial conditions obtained from a 4D-VAR
data assimilation system represent a best-fit of the
forecast to the observations within the assimilation
time interval (Kalnay, 2003). This means that a
perfect model has to be assumed. The data assim-
ilation cycle is run every six hours at ECMWF. A
detailed description and comparison of the exist-
ing data assimilation techniques can be found in
Kalnay (2003).

3.1.2 Deterministic Atmospheric Forecasts

The ECMWF deterministic, operational general circulation model is a hydrostatic spectral model, where
the linear terms are triangularly truncated to 799 waves (T799), which corresponds to a horizontal grid
resolution of 25 km at equator. The spectral horizontal model formulation transforms the variation of
the model variables with latitude and longitude into a series of waves. The vertical coordinate system
is a hybrid 91 levels system, which uses terrain following sigma coordinates in the boundary layer and
purely isobaric vertical coordinates in upper, tropopause-near levels (see f. ex. Kalnay (2003) for details
on discretisation techniques). The forecasts are issued up to 10 days, twice daily.

The ECMWF deterministic model is constantly updated to new standards in atmospheric modelling
and all changes done in the period of interest 2005 to 2008 can be found in the ECMWF technical
documentation and ECMWF model cycle reports2. One important change, however has to be pointed
out, namely the model resolution change on the 1st of February 2006 from a T511 (40 km), 60 levels to
a T799 (25 km), 91 level global model (ECMWF, 2007). This was a significant increase in resolution of
the medium-range forecast system, especially for the representation of relatively small scale features like
TCs. A strong hurricane’s eye with dimensions above 100 km in diameter can now potentially be resolved
by the deterministic model, following a rule of thumb, indicating that a process can be represented, when
it can be characterised by more than a minimum of four model cells.

3.1.3 Ensemble Prediction System

The ECMWF TC EPS produces 51 ensemble members from two forecast runs per day using a model
resolution of T399L62 (50 km transform grid spacing at equator, 62 pressure levels). Before the model
resolution update in February 2006, the EPS model resolution was T255L40 (80 km). The 51 ECMWF
ensembles comprise 1 control run using the ECMWF analysis at the EPS resolution as initial condi-
tion and 50 ensemble perturbations, which take into account the uncertainty in initial conditions and in
parametrised processes.

2http://www.ecmwf.int/products/data/technical/model_id/index.html
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The reason for conducting ensemble forecasts can be well illustrated by the following statement of Jules-
Henri Pointcaré in 1890, who anticipated modern chaos theory (Lorenz, 1963):

”A tenth of a degree more or less at any given point, the cyclone will burst here and not there,

and extend its ravages over districts it would otherwise have spared. If [meteorologists] had been

aware of this tenth of a degree, they could have known it beforehand, but the observations were

neither sufficiently comprehensive nor sufficiently precise, and that is the reason why it all seems

due to the intervention of chance.” (Poincaré, 1908)

Since the initial conditions can never be measured with infinite precision, rapid non-linear growth in initial
errors fundamentally limits our ability to forecast the behaviour of the atmospheric system (Thompson,
1957). The core of an EPS is the generation of perturbations to the initial analysis used to start the
forecast. The perturbations are not generated at random, as it would be the case for example with a
pure Monte Carlo technique. They are a combination of 25 modes, which have the largest impact on
the forecast for the Northern Hemisphere in the short-range (Molteni et al., 1996). ECMWF uses the
singular vector (SV) technique, which is based on a sampling of the directions in the phase space that
are characterised by the maximum amplification rate (Magnusson et al., 2009). The SVs are obtained by
solving an eigenvalue problem, in which the total energy growth is maximised for a 48 h forecast (Persson
and Grazzini, 2005). In an ideal set-up of initial perturbations, the differences obtained are a measure
for the predictability of synoptic scale atmospheric flow, or in other words of the chaos inherent in the
corresponding atmospheric conditions (see figure 3.2). Thus, an EPS provides an a priori information on
the reliability of forecasts.

Figure 3.2: Illustration of dependence of predictability on starting conditions after Buizza et al. (1999). Points
represent the Lorenz Attractor (phase space), bold ellipses indicate initial regions of the same uncertainty. Ensem-
bles of the figure on the left show consistency during the whole time of evolution. The development is predictable
for a certain time before the attractor splits and predictability is lost in the middle. On the right, the predictability
completely breaks down shortly after initialisation.

3.1.4 Tropical Cyclone Forecasts

The ECMWF TC tracker has been introduced as an operational application in October 2004 (Van der
Grijn et al., 2004). The implementation of 4D-Var data assimilation and the activation of satellite
observations like seawinds from QuickSat (2002) as well as dropsondes (1999) in the assimilation system
have improved the ECMWF analysis fields. Increase in horizontal and vertical resolutions (e.g. Feb.
2006) as well as changes to the microphysics and convective schemes have impacted the quality of TC
tracking.

Track Forecasting System

TC features are followed by the ECMWF TC tracker, only if first NHC observations are already available
in the 6 hours around the analysis time (Van der Grijn, 2002). No automatic TC detection algorithm
during the forecasting time is yet implemented. Thus the tracker is a diagnosis system and does not
interact with the model’s dynamics (Van der Grijn et al., 2004). The tracking algorithm is illustrated in
figure 3.3.
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Figure 3.3: TC tracking algorithm. (Source: Van der Grijn et al. (2004))

When a TC observation is available (black dot in figure 3.3) different conditions are tested to identify
the location of the cyclone in the analysis field (from Van der Grijn et al. (2004)):

• minimum sea-level pressure (< 1015 hPa) within a radius of 445 km around the observed TC
position

• cyclonic signature, maximum in relative vorticity at 850 hPa within a radius of 278 km around the
minimum sea-level pressure

• warm core signature, maximum in 850-200 hPa layer thickness within a radius of 278 km around
the minimum sea-level pressure (to distinguish from cold core extratropical cyclones)

• wind speeds over land exceeding U > 8 m/s at the 10 m level

• geographical and orographical limitation: the tracker stops if the TC is over high orography and
more than 278 km away from the tracker first guess.

If the TC is successfully identified in the analysis, the tracker will follow it in the subsequent forecast
steps. Because observations are no longer available, a first-guess is computed and used in order to detect
the TC feature in the forecast fields. The same conditions as listed above apply again and if not fulfilled
the TC is not further tracked and assumed to have dissipated. This point is important in the case of the
ensemble tracks, because it implies that all the 51 members do not necessarily have the same length (see
figure 3.4). Furthermore, unrealistically rapid displacements were filtered out in post-processing. The
first guess position rfg used to identify TCs in forecast fields is obtained from a weighted average of an
extrapolation of the past movement r(t)−r(t−δt) and of an advection by the stearing flow Vadv (Van der
Grijn, 2002):

~rfg(t + δt) = ~r(t) + w(~r(t) − ~r(t − δt)) + (1 − w)Vadvδt (3.1)

The steering flow Vadv is determined from a weighted mean of the zonal and meridional winds at 850 hPa,
700 hPa, 500 hPa and 200 hPa. The weight w can assume values between 0 and 1.

An important element for issuing warnings or using the forecasts in reinsurance is the dissemination
schedule for the ECMWF TC EPS forecast products. The forecast is normally available 8.5 hours after
initialisation time. In figure 3.4 an example of a TC ensemble forecast is shown. The blue squares indicate
dates at which forecasts were started.

The ECMWF TC tracking system output consists of 52 ensemble forecasts of position and intensity in
terms of central pressure for a forecast range of 120 h with a forecast every 12 hours for the 51 members
from the EPS and 1 operational high resolution forecast for the same forecast range but with steps of 6 h.

12
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Figure 3.4 shows an example of an ECWMF tropical cyclone ensemble track forecast. In the following
the high resolution deterministic forecast will be called ”operational” (OPER) forecast, it represents the
ensemble member 0. The lower, EPS resolution deterministic forecast, member 1 will be referred to as
the control run (CTL). The other 50 members result from the perturbed initial conditions of the EPS
model.

 

 

0 500500    1000 km0 NHC observation

ECMWF control run (CTL)
ECMWF operational high resolution (OPER)

Figure 3.4: Example of a TC ensemble track forecast. The operational (OPER) high resolution forecast is shown
in green (ensemble member 0). The lower resolution control run (CTL) from the EPS is shown in violet (ensemble
member 1). The ensemble members 2 to 51 are shown in blue.

Ensemble Perturbations Targeted at Tropical Cyclones

TC ensemble forecasts were made possible by the introduction in 2002 of EPS perturbations targeted at
observed TCs (Puri and Palmer, 2001). The SVs normally used in the ECMWF EPS system are only
optimised for the region poleward of 30◦. These SVs need a linearised model version in order to compute
fast growing structures, which is not optimal for the tropics, because of the presence of strong diabatic
processes. The set of linear physical parametrisations introduced by Mahouf (1999) made it possible to
compute SVs for situations as in the tropics, where physical processes may play an important role in
perturbation growth (Puri and Palmer, 2001). The derivation of tropical SVs and their properties can be
found in Berkmeijer et al. (2000). Unlike the extratropics, where the optimisation of unstable modes is
done globally, the SVs in the tropics have to be optimised for the vicinity of the feature of interest, here
the cyclone, in order to obtain SVs associated with the cyclone dynamics (Berkmeijer et al., 2000). The
SV computation scheme targeted on TCs implemented at ECMWF is described in ECMWF (2007).

3.2 National Hurricane Center (NHC) Data

The NHC, as a component of the U.S. National Center for Environmental Prediction (NCEP) and a unit
of the NWS, issues observations, warnings, forecasts and analyses of hazardous tropical weather. Fur-
thermore, through international agreement, the NHC has responsibility within the World Meteorological
Organisation (WMO) to generate and coordinate TC analysis and forecast products for a certain number
of defined countries in the Americas, the Caribbean and for the waters of the North Atlantic Ocean,
Caribbean Sea, Gulf of Mexico and the Eastern North Pacific Ocean. For the above named countries and
waters the NHC has a legal function as a warning and observation centre.

In this thesis the official NHC forecast was used as a qualitative comparison basis for the ECMWF
forecasts. The best track data were used as verifying observations for the storm tracking approach to
verification. These two NHC products will be shortly described in the following.

13
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3.2.1 Official Tropical Cyclone Forecasts

The NHC official forecasts comprise a forecast of the cyclone’s centre location and maximum 1 min surface
wind speed. Forecasts are issued every 6 hours for lead times 12h, 24h, 36h, 48h, 72h, 96h and 120h
after initial time, which are 0000 UTC, 0600 UTC, 1200 UTC or 1800 UTC. The official NHC forecast
is derived from a combination of several models. An extensive summary of the NHC track and intensity
models is given in Rhome (2007).

3.2.2 Observed Tropical Cyclone Track and Intensity Data

The NHC ”best-track” data contains the official NWS historical record of TC tracks as well as intensities
and is commonly used as a basis for verification of NWP model outputs for the Atlantic and the Eastern
Pacific basins. The NHC best-track data of TCs is obtained from a subjectively smoothed representation
of the TC’s location and intensity generally at 6 h intervals over its lifetime. The center is defined by
the location of the TCs minimum pressure at the surface. The data is based on post-storm assessments
of all available measurements (Avila, 2002).

Surface observations of TCs over the ocean are rare. Near the coast lines observations from buoys are
available. Drifting buoys can be deployed, but usually do not cover a sufficiently representative area in
and around the storm. When TCs make landfall, conventional meteorological station reports can be used,
even if such data has to be used with care, as the intensities are well above the range of measurement,
for which the instruments are designed.

Upper-air observations, measurement from ships and weather radar can be used. Over the free ocean,
the primary source of information is Geostationary Operational Environmental Satellite (GOES) and
polar-orbiting weather satellite imagery, from which position and intensities are deduced using the Dvo-
rak (1984) technique. Several other satellite-based remote sensors yield relevant information on the TC
location and structure. The seawinds scatterometer on the QuickSCAT satellite for example provides a
basis to determine the extent of the TC force winds and the identification of closed surface circulation.
Relatively precise pressure and wind information can be gained from reconnaissance flights from their
flight levels or using dropsondes. Concerning the comparative quality of direct and remote sensors, Brown
and Franklin (2002) showed that nearly half of Dvorak satellite-based intensities fall within 7 kt of the
reconnaissance-based best-track values and only 10% of the data contained differences of more than 20 kt.

On first order, it can be said that synoptic scale atmospheric circulation patterns determine the track of a
TC. This means a first good guess would be to say that the storm follows the stream of the environment, in
which it is embedded. However, the innermost portion of the storm that is used to fix the track is subject
to small-scale (when compared to the size of the storm) oscillations, which usually have a magnitude of
less than 40 km (Murnane, 2004). These so-called trochoidal motions are not representative of the large-
scale motion of the entire storm and are thus excluded from the best track analysis (Jarvinen et al., 1984).

It is important to emphasise that best track data aim at reflecting the best available data describing the
storm, however these data are not perfect and are sometimes subject to substantial uncertainties. The
quality of present best track datasets are discussed in Murnane (2004). The most difficult parameter to
handle are sustained wind speeds, which strongly depend on the averaging time span for surface obser-
vations or the estimation technique used to gain maximum sustained winds from satellite observations.
To reduce the effect of this uncertainty in maximum wind estimation, minimum central pressure values
are used for TC intensity verification in this work. Furthermore, central pressure is functionally related
to both thermodynamic and dynamic sources of forcing and is more steady than the often ephemeral
reported maximum wind speeds (Simpson and Saffir, 2007).

One final aspect is the uncertainty component given by the time dependency of data coverage density.
Indeed point measurements, as well as reconnaissance flights are casual and not constant for the different
events and in time for the same event. Satellite data are more reliable, but mostly yield preciser results
if ground truth is available. Thus it can be said that best-track data do probably not exhibit a constant
quality. This implies that verification of the ECMWF data is done using a reference dataset that is of
variable severity. The same remark applies to the object-based verification case where ECMWF analysis
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data are used as an observational benchmark. Because the observational data basis is the same, variations
in quality over time should be similar in the NHC best track and the ECMWF analysis, which allows
a consistent comparison of the two datasets to be done. Furthermore, it has to be emphasised that the
NHC composite dataset is the best available information on TC track and position currently available.

3.3 Climate and Persistence (CLIPER) Tropical Cyclone Track
Forecasts

CLIPER is a 5-day statistical CLImatology and PERsistence TC track forecast, which is considered a
no-skill forecast and generally taken as a benchmark for forecast verification of a NWP model (Neumann,
1972; Merill, 1980; Aberson, 1998). The model was originally developed for 3-days lead time and was
extended to 5-days by Aberson (1998) due to increasing prediction timescales of NWP models.

The CLIPER model predicts the current TC position from a regression equation. Two different models
are used for the Atlantic and the Gulf of Mexico region. The predictors used in the CLIPER forecast are
initial longitude, latitude, intensity, day number, zonal motion and meridional motion. A least square fit
is operated using historical TC track data (1931-2004, status in 2008) and retaining only those predictors
chosen from the linear terms and from all possible cross terms that explain at least 0.5 % of the variance
of the predictand (see Aberson (1998) for model formulation). Prediction with CLIPER can be done at
12 h intervals up to 120 h.

CLIPER track errors in units of n mi with respect to best track data for the chosen hurricanes of the
seasons 2005-2008 can be found in the respective seasonal verification reports by NHC.

3.4 Statistical Hurricane Intensity Forecast Model (SHIFOR)

SHIFOR is a 5-day Statistical Hurricane Intensity FORecast model analogous to CLIPER (Jarvinen and
Neumann, 1979). It is used to assess the skill of other prediction schemes with respect to intensity. Seven
basic predictors, namely day number, initial latitude, longitude, average zonal and meridional speed in
the past 12h, current maximum sustained wind speed and previous 12h change in maximum sustained
wind speed as well as these predictors’ respective cross-product terms are used in the regression equation
(Jarvinen and Neumann, 1979).

While the SHIFOR model can be a useful benchmark, it is not optimised for landfall situations (Franklin,
2006). Thus, the SHIFOR model was adapted in order to include a decay component, when the hurri-
cane reaches land. The so-called DSHIFOR forecast is produced by adjusting the output of a SHIFOR
forecast, using a decay rate introduced by DeMaria et al. (2006). This requires a forecast track, which is
taken from CLIPER.

The (D)SHIFOR errors are given in terms of differences of maximum sustained wind (in kt). For the
purpose of the verification in this report, they have to be converted into a corresponding minimum central
pressure. This should normally be done using detailed storm information and a dynamic model. However
for the sake of simplicity, the Saffir-Simpson scale correspondence was used (Simpson and Riehl, 1981).
Figure 3.4 shows the relationships that can be used for the different categories.

The conversion rule can be assumed to be linear over the pressure p and wind intensity Umax domain of
interest:

p = −1.13 · Umax + 1073.70 (3.2)

Intensity errors, meaning differences in central pressure were thus approximated as follows, using the
NHC maximum wind speed differences:

‖∆p‖ = 1.13 · ∆Umax (3.3)

15



CHAPTER 3. DATA 3.5. SWISS RE INSURANCE LOSS DATA

50 60 70 80 90 100 110 120 130 140 150
860

880

900

920

940

960

980

1000

1020

Maximum wind speed [kt]

M
in

im
um

 c
en

tr
al

 p
re

ss
ur

e 
[h

P
a]

Figure 3.5: Relation between maximum wind and minimum central pressure using the Saffir-Simpson scale
(Simpson and Riehl, 1981).

DSHIFOR intensity errors for the chosen hurricanes of the seasons 2005-2008 can be found in the respec-
tive seasonal verification reports by NHC. Note that for the year 2005 only SHIFOR intensity errors are
available, as the DSHIFOR model adjustment for interaction with land was implemented only in 2006.
This introduces a slight inconsistency into the analysis, which might, however, be negligible, when com-
pared to the error introduced by converting the wind speed maximum errors in kt as given by NHC into
central pressure error in hPa. Franklin (2009) mentions that on average DSHIFOR errors are 5-15% lower
than SHIFOR errors for lead times 12 h to 72 h and about the same for longer lead times. Because DSHI-
FOR forecasts are used for the time window 2006 to 2008 and SHIFOR forecasts for 2005. (D)SHIFOR
will be employed in the following, when refering to the statistical intensity benchmark forecasts.

3.5 Swiss Re Insurance Loss Data

For the insurance loss modelling using ECMWF TC ensemble track forecasts, Swiss Re’s catastrophe loss
modelling system was used. Natural hazards are generally assessed using a probabilistic modelling ap-
proach, by which the risk is determined using probabilistic event sets. The whole spectrum of physically
realistic probabilistic scenarios is taken into account in order to give a reliable picture of the exposure
of a certain region to a specific natural hazard risk. This is a major advantage over ” deterministic”,
scenario-based modelling or underwriting experience, out of which any prediction of expected annual
losses or occurrence frequencies would remain very uncertain (Zimmerli, 2003). The basis for setting the
policy strategy for an insurance or reinsurance company is the estimation of the loss frequency curve
(exceedance probability of a certain loss value) for all regions of interest.

The model used by Swiss Re in order to estimate the local risk exposure can be summarised as shown in
figure 3.6. The four modules represent the fundamental building blocks of loss modelling (Meyer et al.,
1997):

1. Hazard: representative selection (”event-set”) of all possible events that have to be taken into
account. For this, historical event catalogues as well as scientific knowledge about the physical
characteristics of TCs are used. Wind intensities are computed from central pressure values using
the so called Holland formula (Holland, 1980) relating central pressure to the maximum wind
velocity by using additionally an assumption for the radius of maximum wind.

2. Vulnerability: takes the location specific building type and quality into account. The mean
damage ratio is a measure describing the average amount of expected losses as a percentage of
total insured value. Vulnerability curves are designed for different groups of objects with similar
characteristics. Authentic loss data as well as complementary engineering data are used in this
module.
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3. Value distribution: in order to estimate the expected loss the value of the insured object has to
be known. Thus information on the whole insured portfolio has to be acquired.

4. Insurance conditions: the extent of insured loss dependends on the conditions defined in the
treaties. The estimation of these can be simple in the case of deductibles and liability limits,
but it can get very difficult in cases, in which for example business interruption, power failure or
consequential losses like accommodation costs are covered. For the case studies presented in this
report, this module was not used. So called ”from ground up” losses were estimated instead.

Figure 3.6: Concept for assessing natural hazards (Swiss Re).

All four modules impact the outcome of a loss assessment. The uncertainty of each individual module
enters in the final uncertainty of the loss frequency relationship and combines into a final loss uncertainty.
The main sources of uncertainty are the representativity of an event set and the estimation of the mean
damage ratio.
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Chapter 4

Case Studies

4.1 Tropical Cyclones in the Gulf of Mexico

Figure 4.1: Hurricane track climatology of the years
2000 to 2007 (Source: NHC). Light and dark red rep-
resent storm intensities of the Saffir-Simpson Categories
1-2 and 3-5 respectively. Yellow, green, black and grey
segments show intensities below hurricane force. Other
colours represent sub- or extratropical storms

Figure 4.2: Hurricanes Katrina and Rita, season 2005
in the context of natural gas and oil platforms in the Gulf
of Mexico (Source: Wells (2006)).

In the Atlantic basin, hurricane activity is
highest during the summer and major hurri-
canes generally occur in August or Septem-
ber. From the pattern in the hurricane track
climatology of the years 2000 to 2007 (Fig-
ure 4.1) the tracks can be classified into four
general paths groups, depending primarily on
their recurving point: (1) along the U.S. East-
ern coast, (2) through the Caribbean Sea into
the Gulf of Mexico, (3) over Florida and
then into the Gulf of Mexico, (4) from the
Caribbean Sea, recurving at the edge of the Gulf,
over Florida and then along the Eastern U.S.
coast.

Approximately one third of the Atlantic hur-
ricanes eventually pass through the Gulf of
Mexico (Hodge, 2006). In the last cou-
ple of years several major hurricanes passed
through the region. The Atlantic hurri-
cane season 2005 was the most active season
since the beginning of accurate record keep-
ing in 1944 (Beven et al., 2008). NHC
recorded 27 tropical storms, of which 15 be-
came hurricanes. Five hurricanes made land-
fall in the U.S. causing well over 100 bil-
lion Dollars in damages in the U.S. alone
and nearly 1700 deaths (Beven et al., 2008).
As can be seen in figure 4.2, particularly
hurricane Rita and Katrina passed through
the heart of the Gulf oil and natural gas
production, resulting in widespread disrup-
tion of activity. Following the U.S. En-
ergy Information Administration (EIA) only ap-
proximately one fourth of the annual aver-
age oil and natural gas production could be
achieved by the offshore fields in the year
following the 2005 hurricane season (Hodge,
2006).
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In addition to these on-sea damages to the Gulf oil and gas production, the infrastructure on land and
thus the whole regional economy can be severely struck. Considering the high magnitude of overall losses
that can occur in the Gulf region, insurers are very cautious about the capacity they expose. After major
hurricanes like Ike, Gustav in 2008 or Katrina and Rita in 2005 several reinsurance companies were forced
out of business. However, precisely because of the elevated damage potential, the Gulf region is still an
attractive and potentially very profitable market for the insurance and reinsurance industry. The actual
exposure is far from being totally covered. Thus, there is a high interest from the side of the insurance
sector to improve the way the hurricane risk is handled in order to better understand the exposure and
adapt their policy strategy.

Medium to short-range forecasts of TCs are used in a very different way by a state government or a global
reinsurance company. For evacuation planning a lead time of at least 24h is needed and false alarms may
cost several hundred thousand dollars and affect the trust of the population in the authorities. In the
(re)insurance domain such forecasts can influence last minute trading of risk-linked securities, like catas-
trophic risk (CAT) bonds. Theses innovative financial vehicles known as ”Insurance-Linked Securities”
(ILS) emerged in the 1990ties and play an important role in today’s financing of mega-catastrophes (see
Cummins (2007) and Forchaux (2006) for an overview). The general idea is to transfer catastrophic
risks to capital markets, thus easing industry capacity constraints (Sigma, 2006). This development has
created a large source of new capacity, involving investors in the broad capital markets, who are bet-
ter suited than reinsurance companies to assume the high severity/low frequency risk profile of natural
catastrophes (Sommerville, 2009). Trading of CAT bonds continues until a few hours before landfall and
information on probable landfall locations and intensities for three to four days lead time can be very
useful. Short-time insurance loss modelling based on the available forecasts can give a good picture of
the overall losses that might be expected and can help on a strategic decision making basis (trading) as
well as on an communication level (top management information, press release).

The TCs used in this report were selected with the above summarised background of the insurance sector
and potential damage for society in general in mind. Because of the quality and consistency of available
forecast data and because of the specific interest for extreme weather, only TCs ranked as hurricanes
(central pressure ≤ 989 hPa) were considered. In the following sections the hurricane events used in the
three foci of analysis of this report are presented.

4.2 Selected Hurricanes 2005-2008 for the Storm Tracking
Verification Approach

A total of 29 hurricanes were used for the statistical analysis of forecast errors of the ECMWF TC fore-
casting system as shown in figure A.1 in the appendix. Table A.1 summarises the main properties of
these hurricanes. In principal all hurricane force TCs of the North Atlantic were used. This choice is
due on one hand, because these are the damage effective events, which are most interesting for damage
assessment. On the other hand, the data availability was best for these events. There were 70 TCs in
the period 2005 to 2008 in total. The number of forecasts for the tropical storms is however significantly
lower, than the ones for hurricane force storms, because of their mostly shorter lifetime. For four of them
the ECMWF forecasts were not available. These were thus left out (Cindy (2005), Dennis (2005), Epsilon
(2005), Lorenzo (2007)).

The sensitivity of the computed verification scores towards the hurricane characteristics like intensity and
landfalling was investigated using the group definition shown in table 4.1. Of the 29 hurricanes chosen, 17
passed through the Gulf of Mexico once in their lifetime. All the hurricanes with Saffir-Simpson Category
higher or equal to 3 making landfall (H3Land), passed through the Gulf of Mexico. The percentage of
hurricanes that occured in the year 2005 when compared to the total over the whole period of analysis is
emphasised in table 4.1. As mentioned in section 3.1 the model resolution changed in the beginning of
2006, which is expected to have improved the forecast quality substantially in subsequent years. This has
to be borne in mind, when performing a sensitivity analysis of the forecast errors towards these hurricane
groups. If higher errors are found for the group of landfalling Category 3 hurricanes (H3land) for example
than for the other groups, this result might have been affected by the higher 2005 hurricane proportion
in this group.
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Table 4.1: Hurricane groups for investigation of forecast quality dependence on landfalling and intensity. AllH
comprises all selected hurricanes. H3 represents only hurricanes having sustained a central pressure classified as
Category 3 or more on the Saffir-Simpson scale at least once during their lifetime. AllHLand encompasses all
hurricanes having made landfall. The group H3Land combines the Category 3 hurricanes that made landfall.

Group 2005 2006 2007 2008 Total

AllH 11 (38%) 5 5 8 29

H3 6 (40%) 2 2 5 15

AllHLand 7 (37%) 1 4 7 19

H3Land 5 (45%) 0 2 4 11

4.3 Hurricane Event for Object-Based Forecast Verification

For the object-based verification of tropical cyclone forecasts in the ECMWF deterministic model only
one hurricane was used, partly due to the time constraint and because the focus was intentionally laid
on the development and construction of such a new verification measure. The analysis of other events
using this technique and its application to ensemble forecasts are beyond the scope of this master thesis,
but would be interesting in future work.

Hurricane Ike was selected for this analysis because it was the most destructive one of the 2008 season,
for which the latest ECMWF model state could be used. Important elements concerning the dynamics of
this hurricane are shortly summarised below. The detailed synoptic history and meteorological statistics
of hurricane Ike can be found in Berg (2009). The track with the intensity evolution is shown in figure 4.3.
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Figure 4.3: Hurricane Ike track and evolution of in-
tensity. The colorbar indicates the intensity in terms of
Saffir-Simpson Categories. Category 0 corresponds to the
tropical storm level. For the corresponding wind speeds
and central pressure see table 2.1 in section 2.3 of chap-
ter 2.

Hurricane Ike emerged from a tropical wave mov-
ing off the west African coast on the 1st of
September 2008. Favourable low vertical wind
shear conditions as well as a strong low over
the North-western Atlantic and an upper-level
trough favoured a quick intensification up to a
Category 4 storm with a minimum recorded cen-
tral pressure of 935 hPa and wind peak in-
tensities of 233 km/h. Strong north-westerly
shear weakened Ike to a Category 3 storm as
it moved westward towards Cuba. Haiti was
touched by Ike’s outer rainbands, which caused
floods and mudslides. Loosing 2 Categories in
strength, while crossing Cuba, where it caused
important wind and flooding damage, hurricane
Ike moved further into the Gulf of Mexico. The
warm Gulf waters helped a new strengthening
into a Category 2 hurricane. Ike made landfall
in Galveston (Texas) on the 13th of September
2008. After merging with a cold front on the
14th of September, Ike weakened to a tropical
storm.
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4.4 Hurricane Events for Insurance Loss Predictions

For loss predictions, the most destructive and costliest hurricanes, which made landfall in the Gulf region
in the period 2005-2008 were used. The selected storms are shown in figure 4.4. All the hurricane track
types mentioned in section 3.1 above are represented except type 1 track, which follows the U.S. East
coast.

Gustav

Ike

Katrina

Wilma

Rita

0 500     1000 km0

Figure 4.4: Selected hurricanes in the time period 2005-2008. The location of the name indicates the starting
point of the hurricane.

At least two different lead times were chosen for each hurricane, 1 and 3 days before landfall. The first one
is intended as a reference for public measures like evacuation planning, or information of top management
in the case of a company like Swiss Re. The second one allows strategic measures to be taken both by
governments (issuing a storm watch) and trading in (re)insurance. The chosen lead times are listed in
table 4.3. For hurricane Katrina, 3 lead times were chosen because de first landfall in Florida already
induced considerable damage. The 24h ECMWF forecast for hurricane Rita was not available, thus the
two used forecast lead times only have 1 day difference.

Table 4.3: Landfalling dates and times for the hurricanes selected for loss predictions.

Hurricane Landfall date Landfall location F1 F2 F3

Ike 08/09/13 07:00 Galveston Island, Texas 79h 31h -

Gustav 08/01/09 12:00 Cocodrie, Louisiana 72h 24h -

Wilma 08/10/21 22:00 Cozumel, Mexico 22h - -

08/10/22 03:30 Puerto Morelos, Mexico 27.5h - -

08/10/24 10:30 Cape Romano, Florida 82.5h 22.5h -

Rita 08/09/24 07:30 Texas/Louisiana Border 67.5h 43.5h -

Katrina 08/08/25 22:30 Southeastern Florida 22.5h - -

08/08/29 11:00 New Orleans, Louisiana 107h 71h 23h

In the following the main damage figures and most important aspects of each hurricane are presented. The
indicated losses and number of deaths are drawn from the U.S. National Climatic Data Center (NCDC),
which is responsible for monitoring and assessing climate events that have great economic and societal
impacts in the U.S. and globally. The focus is laid on insurance damage occuring in the U.S., because
no portfolio information on the Gulf Islands is available. Furthermore, the societal damage information
contained in the computed losses is only representative for the U.S. because the the insured value in the
hispanic countries around the Gulf of Mexico does probably not comprehend a wide enough range of
activities.
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Ike: 01.09.2008 - 14.09.2008
Hurricane Ike made landfall in Galveston (Texas) with wind peaks ranking it as a Category
2 hurricane. In terms of storm surge it was rather a Category 4 to 5 hurricane. Storm surge
was considerable in Texas, near the point of landfall, wind and flooding damage occured in
Texas and downwind up to Illinois and Pennsylvania. Hurricane Ike enters present history
as being the largest size Atlantic hurricane on record. As mentioned in section 3.1 it severely
struck the oil and gas industry of the region. The total damage is estimated at 27 billion
U.S. Dollars and approximately 200 fatalities.

Gustav: 25.08.2008 - 04.09.2008
Hurricane Gustav made landfall as a Category 2 hurricane in Louisiana a week before Ike
and caused significant wind, storm surge and flooding damage in Louisiana, Mississippi,
Arkansas and Alabama. Total damage is estimated at more than 5 billion U.S. Dollars and
150 deaths.

Wilma: 15.10.2005 - 26.10.2005
Hurricane Wilma was the last major hurricane of the record season 2005 and made land-
fall in Mexico before recurving north, where it struck Southern Florida as a Category 3
hurricane. Its minimal pressure of 882 hPa is estimated to be the lowest pressure ever mea-
sured in the Atlantic. Its quick intensification of 169 km/h wind speed increase in 24 h also
established a new record. Total losses are estimated at 30 billion U.S. Dollars and 60 deaths.

Rita: 18.09.2005 - 26.09.2005
Hurricane Rita hit the Texas-Louisiana border region as a Category 3 hurricane. It was
responsible for signification storm surge and wind damage along the coast as well as inland
flooding in Alabama, Mississippi, Louisiana, Arizona and Texas. Its minimum pressure of
897 hPa is the third lowest ever recorded. Total damage is estimated at 17 billion Dollars
and 119 deaths.

Katrina: 23.08.2005 - 31.08.2005
Hurricane Katrina made a first landfall in Florida, near Miami as a Category 1 hurricane
and a second landfall as a strong Category 3 hurricane at the Louisiana/Mississippi coast-
line, near New Orleans. It induced major storm surge as well as wind damage and severe
flooding through levee system failure.The total damage is still not definitely established but
is estimated around 125 billion U.S. Dollars, which makes it the most expensive natural
disaster in U.S. history. The fatalities amounted to 1800 deaths, which also figure amongst
the highest number in history.

Detailed discussions of these events can be found on the NHC web page (http://www.nhc.noaa.gov/
pastall.shtml#tcr). It should be pointed out that the above numbers have to be considered with
care. The differences between individual reports can be substantial. Thus, they should only be taken as
indicative of the order of magnitude of the real damage.
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Chapter 5

Methodology

In order to compare different forecasting systems and to assess their performance an adequate framework
for forecast verification has to be set up. For deterministic track forecasts a semi-automatic verifi-
cation procedure has been proposed by Heming (1994) and applied at the U.K. Met Office. Several
case studies have assessed the value of short and medium-range deterministic and ensemble forecasts
in the domain of hydro-meteorology (e.g. McCollor and Stull (2008b) and McCollor and Stull (2008a),
Roulin (2007)). Feature specific quality measures have been proposed, as for example the object-based
”Structure-Amplitude-Location” quality measure (Wernli et al., 2008) for verification of quantitative
precipitation forecasts.

This chapter describes the methods that were applied to investigate the three ways of looking at the
verification problem presented in the introduction. First, the interpolation method used in order to
compare the ECMWF forecasts to the NHC observations as well as the scores used in the traditional
storm tracking approach to verification of tropical cyclones are presented. In the second section, the
object-based verification procedure is introduced. Finally, an overview is given of Swiss Re’s catastrophe
modelling system, which was used for the loss predictions.

5.1 Methods of Traditional Tropical Cyclone Forecast
Verification

Next to the routinely produced verification statistics of NWP from their operational model, several fore-
casting institutions have implemented a specific verification procedure for TC forecasts. Heming (1994)
describes a semi-automatic track verification method, which has been applied since 1994 at the UK Met
Office. Verification statistics of TC forecasts by ECMWF are to be found in Van der Grijn et al. (2004).
The aim behind such a feature specific evaluation is primarily to assess the model’s ability to handle
these weather systems. In the case of a global NWP models such as ECMWF, to improve the skill of TC
forecasts can also help reducing the downstream development of forecast errors, when cyclones originating
from tropical regions enter the mid-latitudes (Van der Grijn, 2002). Indeed, cyclones that move from the
tropics into the extratropics were found by Froude (2009) to be affected by larger forecast errors in their
predicted intensities than storms that originate in the extratropics.

In this part, the verification procedure is based on 2 variables, namely the storm’s position and intensity,
which are compared for every available forecast with the NHC best track observation. The TC is thus
represented by its minimum pressure location and the value of this pressure as an indication of intensity.
In figure 5.1 the verification approach is illustrated. The different positional error components that are
introduced in section 5.1.2 are shown as well. The data interpolation onto the same time grid is described
in section 5.1.1. In the two subsequent sections the different error statistics that were computed in order
to assess the performance of the ECMWF TC forecasting system are presented. Two types of statistics
can be derived from the model output. The cyclone’s forecast track and the predicted intensity can be
verified. A simple skill score for the position and intensity forecast, the computation scheme for the
ensemble mean and spread, a measure for linear association and the equal likelihood analysis of ensemble
members are introduced thereafter.
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Figure 5.1: Forecast and observed track. Adapted from Froude et al. (2007)

5.1.1 Interpolation of the Observational Time Grid

The observed and forecast positions and intensities are not given on the same time grid. Observations
generally have a time resolution of 6h and are given for UTC times 03:00, 09:00, 15:00, 21:00. However,
the time grid is not regular and for some dates, data is available on 3 h resolution. Forecasts are available
at 00:00 UTC and 12:00 UTC. Although it could be argued that the good quality of the observed data
should not be compromised by performing an interpolation, the observations were chosen to be inter-
polated onto the forecast time grid. The reasons for this choice are, firstly, that the forecast time grid
does not vary in resolution as the observational time grid does and secondly that the quantity of data
to be interpolated is lower when selecting the observations. There are many forecasts along the track
with each time 52 members, whereas there is only 1 observational track. The sensitivity of the computed
error statistics with respect to the interpolation scheme was analysed for one hurricane (Ike, 2008) and
no significant differences were observed (see appendix, section A.3.1).

 

 

0 100100 500500     1000 km0

NHC OBS
INTERP
FCST Dates

Figure 5.2: Interpolation of the observed track (red
line). The difference in the initial forecast position (blue
squares) and the corresponding interpolated observation
(red circles) is apparent.

The observations that are available to ECMWF
at the time of forecast initialisation may be differ-
ent from the best-track data available today. The
latter data has been improved by measurements
that can be used only in a post-assessment of the
event like satellite imagery or aircraft observations
for example. To perform a thorough model veri-
fication the best available dataset of the observed
event should be used. This is reflected in an initial
positional error of the cyclone in the verification
results. The initial forecast position at lead time 0
and the observation interpolated to the same time
grid, do not necessarily overlap (see schematic in
figure 5.1). Figure 5.2 shows an example of a track
with the original observed track data, the interpo-
lated track data. The distance between the fore-
cast starting points (blue squares) and the interpo-
lated observations (red circles) represents the ini-
tial position error. Figure 5.3 shows the magnitude
of these errors.
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The median value of the initial longitudinal error of the forecast is 63.4 km to the East. The median
value of the initial latitudinal error is 41.1 km to the North. These values, as well as the surprisingly high
spread of these errors (figure 5.3), are similar to the ones found in the literature. In an early assessment
of the performance of the ECMWF TC forecasting system for the months of February, March, April
and May 2002 values around 100 km were found as initial positioning errors (Van der Grijn, 2002). In
a subsequent study by ECMWF, the initial direct position error amounted again to slightly more than
100km (Van der Grijn et al., 2004). Neumann and Pelissier (1981) indicate a value of 38 km over the
period 1970-1979, which is significantly less than the values obtained above. In this latter study official
NHC forecasts were assessed. In the NHC forecast advisories the accuracy of the location of the cyclone
centre is around 20 to 30 n mi (∼ 35 to ∼ 55 km).
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Figure 5.3: Initial positional errors at the forecast time for the selected hurricanes of the years 2005 to 2008.

Considering the magnitude of the above discussed initial position error, other model related reasons than
the mentioned post-event correction of observations by the NHC have to be found. One explanation
is that the ECMWF TC forecasting system does not use the observed position given by the NHC as a
starting point for the tracking but the corresponding minimum in mean sea level pressure detected in
the analysis. Furthermore, an important contribution is surely given by the model grid spacing of 50
km at equator for the ensemble forecasts and 25 km at equator for the operational forecasts. Finally,
the definition of the TC center can vary slightly, depending on the forecasting institution. NHC uses the
minimum pressure location at the surface, which is also what ECMWF identifies in the analysis fields
and follows in subsequent forecasts.

5.1.2 Definition of Positional Errors and Biases

The NHC defines the track error as the great-circle distance between a cyclone’s forecast position and
the best track position at the forecast verification time (NHC, 2008; Neumann and Pelissier, 1981). In
this report, this distance will be referred to as direct position error DPE. For small distances between
two geographical points on an idealised spherical earth, the haversine formula can be used:

DPE = 2 arcsin

(
√

sin2

(

∆φ

2

)

+ cosφ1 cosφ2 sin2

(

∆λ

2

)

)

(5.1)

where DPE direct position error [km]
φobs, λobs latitude, longitude of the observed point [km]
φfct, λfct latitude, longitude of the forecast point [km]
∆φ, ∆λ difference in latitude, longitude between the observed

and the forecast position [km]

The direct position error gives an indication about the general quality of the track forecast, but gives no
information as to whether the forecast errors result from a slow/fast bias or from an early/late recurvature
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towards the pole. The direct position error can be split into two distinct variables, which account for the
above mentioned characteristics. This separation of DPE into an along track error AT component and
a cross track component CP is shown in figure 5.4 and figure 5.1. The two components are computed
using the observation OB2 corresponding to the forecast point FC and the previous observational point
OB1.

Figure 5.4: Types of positional forecast errors. DPE represents the direct positional error, CT is the cross track
component, AT the along track component. DX represents the longitudinal component and DY is the latitudinal
component. (Adapted from Heming (1994))

The positional error components can all be expressed as absolute errors or as biases. If the model is
well calibrated that is if it is reliable as defined in section 2.3 in chapter 2, the long term mean of the
ensemble as well as of the operational forecast bias should be zero.

The along track bias ATB occurs, if the forecast storm moves at a different speed than the analysed
storm. It is negative when the forecast cyclone is too slow. ATB is defined as follows, when refering to
the notation in figure 5.4:

ATB =

(

−−−−−−−→
OB1 OB2 ·

−−−−−−→
OB1 FC

)

‖
−−−−−−−→
OB1 OB2 ‖

−
−−−−−−−→
OB1 OB2 (5.2)

The along track error ATE is defined as ATE = |ATB|.

The cross track bias CTB is defined using the same conventions:

CTB =

√

√

√

√

√‖
−−−−−−→
OB1 FC ‖2 −

(

−−−−−−−→
OB1 OB2 ·

−−−−−−−→
OB1 OB2

)2

‖
−−−−−−−→
OB1 OB2 ‖2

(5.3)

CTB is positive when the forecast position lies right of the observed track, which is known up to OB2
and is linearly extrapolated using point OB1. This definition is artificial and the differentiation is only
made in order to detect recurvature biases in one of the two directions relative to the track. The along
track error ATE is defined as ATE = |ATB|.

The direct position error can also be separated into two track independent components by using a
conventional zonal/meridional coordinate system. This leads to the longitudinal position error LONE

26



5.1. METHODS OF TRADITIONAL TC FORECAST VERIFICATION CHAPTER 5. METHODOLOGY

and bias LONB, as well as the latitudinal position error LATE and bias LATB. Such a separation
allows an investigation of possible biases in North/South and East/West directions of the track forecast
as well as the evaluation of the model error in representing each component. LATB is positive, if the
forecast has a bias towards the north. LONB is positive, when the forecast has a bias towards the east.

5.1.3 Intensity Error and Bias

The ECMWF intensity forecast of tropical cyclones is given in terms of the estimated central pressure.
The central pressure error CPE is defined as the absolute difference between the observed intensity
interpolated on the same time grid as the forecast and the forecast intensity.

CPE = |CPOBS − CPFCT| (5.4)

The central pressure bias CPB corresponds to

CPB = CPOBS − CPFCT (5.5)

The pressure bias is thus negative if the forecast underestimates the intensity (i.e. overestimates the
pressure).

5.1.4 Simple Skill Score for Track and Intensity Forecasts

A simple skill score for the position forecast can be defined as follows:

SST =
DPECLIPER − DPEECMWF

DPECLIPER
(5.6)

Similarly for the intensity forecast, the following equation can be used to compute the skill:

SSI =
CPE(D)SHIFOR − CPEECMWF

CPE(D)SHIFOR
(5.7)

This definition allows a direct and simple assessment of the forecasts, when compared to CLIPER data
for the track and to (D)SHIFOR data for the intensity. In theory, for all the error measures (ATE,
CTE) defined above, a skill score of the general form can be formulated. This was not done in this
thesis, because the benchmark forecast CLIPER was only directly available for DPE.

5.1.5 Ensemble Mean Error and Spread

In order to assess the statistical reliability of track and intensity forecasts, the ensemble mean error
and spread were compared. If the EPS is reliable in the sense defined in section 2.3 of the chapter on
Theories and Concepts, the mean error and the mean spread are equivalent. The mean error represents
the geodesic separation/absolute intensity difference between the mean tracks/intensities and the cor-
responding analysis tracks/intensities. The ensemble spread can be obtained by computing the mean
ensemble deviation in position/absolute intensity of the ensemble members from the ensemble mean.

5.1.6 Measure of Linear Association

The Pearson correlation coefficient is a very practical score, because of its invariance properties with
respect to scale. It is used to assess linear association between forecasts and observations:

ρ =
cov(x, x̂)

√

var(x) · var(x̂)
(5.8)

where var(x) variance of the observations
var(x̂) variance of the forecasts
cov(x, x̂) covariance between the observations and the forecasts

It should be pointed out that two uncorrelated variables are not necessarily independent since they can
be non-linearly rather than linearly related to one another (Jolliffe and Stephenson, 2003).
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5.1.7 Likelihood of Ensemble Members

In order to verify the assumption that all members of the ECMWF TC ensemble forecast are independent
realisation of the same random process and that the members can be treated in an indistinguishable
fashion, a slightly adapted form of an equal likelihood frequency plot (Jolliffe and Stephenson, 2003)
was used. For each forecast in the verification period, the best member was sorted out. The frequency
at which each member was the forecast closest to the verifying diagnostic was then analysed for each
lead time. This check of independence between members has to be done in order to be able to use the
ensemble correctly in the insurance loss prediction part, where forecast probabilities are defined.

5.2 Object-Based Verification Approach

5.2.1 Demands on the Novel Object-Based Verification Measure

In order to provide an assessment framework that is as targeted as possible, specific demands on the new
verification measure were formulated, with respect to form and substance. They are shortly listed in the
following.

Formal demands:

• Problems of double-penalty of grid-point based measures should be avoided

• The new measure should be easy to communicate

• Important problems should be pointed out visually

Substantial demands:

• Verify feature specific properties

• Identify problems in TC structure and dynamics

• Help explaining inabilities of the model to render the feature accurately

The Structure-Amplitude-Location (SAL) framework introduced by Wernli et al. (2008) for precipitation
features is found to be adequate for the needs formulated above and was thus adapted for its use in the
case of TC verification. The transcription of the SAL concept to the case of TC features should allow
to point out structural and dynamical deficiencies in the representation of these weather systems in the
ECMWF deterministic high resolution model. For setting up and testing the object-based verification
approach, the ECMWF deterministic forecasts for hurricane Ike (2008) are used (see section 3.1.2 for
details about the model and section 3.3 for a description of the chosen hurricane).

In the following the object identification procedure is explained. Thereafter three object-based verification
components are proposed.

5.2.2 Object Identification

The object identification procedure is based on the 3 following steps:

1. The structure is identified by successively filling contours of increasing pressure. The procedure
begins at a pressure p of 989 hPa (upper limit of the Saffire-Simpson hurricane Category 1) and
reaches 1015 hPa by increments of 1 hPa:

989hPa ≤ p ≤ 1015hPa (5.9)

This implies a variable threshold for one particular date, when analysing different forecast ranges,
as can be seen in figure 5.5 for hurricane Ike in 2008. The differences between the forecasts for a
certain date are of maximum 5 hPa around the landfall date. It is at the same point in time, as
can be expected, that the area differences are also maximum (see figure 5.7). The intensification of
the hurricane can be perceived indirectly by the decreasing pressure threshold and has to do with
the minimum area and maximum area growth thresholds introduced and explained below.
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Figure 5.5: Pressure threshold applied to identify TC objects for hurricane Ike ECMWF analysis and forecasts.

2. The filling of a contour is done by using a 4 direction recursive seed fill (Soille, 1999). The starting
point is given by the NHC observation. In order to obtain only objects with an approximately
symmetrical structure and concentric isobars, the growth of the object is limited to 25 % of its area
a(p) for the pressure threshold p with respect to its area a(p − 1) for the pressure threshold p − 1:

a(p) − a(p − 1)

a(p)
< 0.25 (5.10)

The area growth thresholds especially avoids the inclusion of extratropical features because of a too
high pressure threshold as would have been the case in the situation shown in the figure 5.6.

Figure 5.6: Object identification without area growth threshold. The colorbar indicates the pressure scale in
hPa. The example shows hurricane Ike shortly after landfall.
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3. Condition 2 is only applied, if the area of the TC exceeds 2 · 105 km2 (i.e. an equivalent 500 km
radius) to account for the strong pressure gradients surrounding the center of the storm. This
minimum size is not a stringent threshold. The object can be smaller by the area of one 1 hPa
contour ring, if the latter represents an area bigger than the 25 % areal growth that was fixed in
step 2. This means that the identified objects have a size around 2 ·105 km2 and can be much bigger
only if the isobars enclosing the so far identified object are close together (implying an increase of
less than 25 % of the area at each 1 hPa step). Figure 5.7 shows the area of the identified objects
as a function of time for hurricane Ike. The chosen ”soft” size threshold implies an object size with
respect to the model resolution of approximately 200 grid points.
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Figure 5.7: Area of the identified objects for hurricane Ike ECMWF analysis and forecasts.

The presented object identification scheme does not necessarily find an object for every pressure field.
If the conditions above are not fulfilled, there is no identified object for the given date and time. A
comparison using the components that will be defined in the next section is done only if there is an
identified object in both the forecast and the observation field.

5.2.3 Definition of the Components

Three components were defined to assess the cyclone objects’ properties in a holistic way. All components
are normalised by an adequate range of expected value of the considered error measure. The values of
the components are set within the range [−2, +2], with 0 indicating a perfect forecast. Values greater
than 0 indicate an overestimation by the model.

Location Component

The location component L was defined using the point of minimum pressure in the defined object. This
characteristic was chosen instead of the barycentre of the object, as it was done in Wernli et al. (2008).
The location component is normalised by an average cyclone radius Rc of 250 km:

L =
~rfct − ~rana

Rc

(5.11)

The location component is furthermore artificially separated into positive and negative by setting negative
values for L, if the forecast lies south of the observation and positive, if it lies north.
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Amplitude Component

The amplitude component A is defined using the concept of integrated kinetic energy (IKE) (Powell and
Reinhold, 2007) in the TC object (see chapter on Theories and Concepts, section 2.2 for a definition of
IKE.):

A =
IKEfct − IKEana

1
2 (IKEfct + IKEana)

(5.12)

This component can be adapted depending on the needs and goals of a specific model assessment. For
example IKE can be computed using only winds above a certain threshold. This can either be done
as presented in Powell and Reinhold (2007), where wind speed thresholds are chosen, which correspond
to the limits of the Saffire-Simpson scale. The alternative consists in using a quantile threshold from
the wind fields of each particular object. The latter way of proceeding ensures that IKE can always be
computed for an identified object.

The time series of obtained IKE for hurricane Ike analysis and forecast objects is shown in figure 5.8.
The relative importance of the wind speed and the area in the resulting IKE can be qualitatively assessed
by comparing the graphs in figure 5.8 with figure 5.7. The peaking IKE around time 250 h is given
partly by the big TC object area and partly by the peaking maximum winds. The increase in IKE from
time 0 h to time 120 h is on the other hand induced by the increasing wind speeds. The slight decrease
in IKE after passing over Cuba is mainly due to the momentary decrease in wind speeds after landfall.
The sharp decrease after landfall in the U.S. is again a combined effect from wind and TC area.
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Figure 5.8: IKE and maximum wind of the identified objects for hurricane Ike ECMWF analysis and forecasts.

Structure

The structure component S aims at verifying the correct representation of the wind field in the identified
object. This can be done in different ways:

1. Verify the location of the peak wind using a radial (R) and an azimuthal (AZ) information:

S1R =
Rfct − Rana

1
2 (Rfct + Rana)

(5.13)

S1AZ =
AZfct − AZana

1
2 (AZfct + AZana)

(5.14)

2. Verify the whole wind field:

S2 =
V sfct − V sana

1
2 (V sfct + V sana)

(5.15)
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The scaled volumes V Sfct and V Sana are defined as follows

V sfct =
1

N

∑

i,j

Ufct,i,j

Ufct,max

V sana =
1

N

∑

i,j

Uana,i,j

Uana,max

where V s scaled average wind volume of the object [-]
N number of grid points in object [-]
Ui,j wind velocity at 10 m above ground (sea) [m/s]

3. Verify individual wind subobjects inside the identified pressure object. The structure component
is then defined in a similar way as in Wernli et al. (2008). The wind subobjects can be defined
using the 80% percentile threshold value from the wind field inside the pressure object. Then a
”scaled wind volume” (similarly as the scaled precipitation object in (Wernli et al., 2008)) Vo can
be calculated as:

V so =

nx,ny
∑

i,j

Uo,i,j

Umax
o

(5.16)

where V so scaled wind volume of the subobject o [-]
nx · ny number of grid points in subobject [-]
U i,j

o wind velocity field of subobject o

at 10 m above ground (sea) [m/s]
Umax

o wind velocity maximum of the field U i,j
o [m/s]

The weighted mean VM of all M subobjects’ scaled wind volume is then computed for both the
analysis and the forecast fields:

VM =

M
∑

o=1

V so · Uo

M
∑

o=1

Uo

(5.17)

The weights Uo are defined by the total wind speed summed over all grid points inside the different
subobjects. The normalised difference between the forecast and the analysis field is computed in
order to obtain the S-component:

S3 =
VMfct

− V sMana

1
2 (VMfct

+ V sMana
)

(5.18)

Note that the third and the second method proposed above for the structure component are very similar.
Method 3 uses an average scaled value instead of the total volume with only one object and a wind
threshold of 0 m/s as it is done in the second method. The last two methods to compute the structure
component of the proposed object-based verification scheme rather aim at revealing problematic aspects
that should help to improve the model representation. The first method is more straight forward in terms
of interpretation and thus targets at a model user oriented public, like a reinsurance company.
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5.3 Damage Assessment with CatMos

Figure 5.9 summarises the procedure applied for insurance loss predictions with Swiss Re’s catastrophe
modelling scheme (CatMos), using ECMWF TC forecasts. In order to obtain probabilistic insurance loss
predictions, the ECMWF probabilistic position and intensity forecasts from the EPS model are used as
input data to CatMos. Conceptually, a so called wind ”footprint” is first obtained by transforming the
central pressure information into a wind distribution using the Holland formula (Holland, 1980) and a
constant radius of maximum wind. A wind ”footprint” example is shown for hurricane Katrina in figure
A.24 of the appendix. Then the different loss modelling steps are performed in order to obtain a predicted
insurance loss distribution. The loss predictions are normed by the observed loss. The latter is computed
from the footprint of the NHC best track data.

One problem is that the observed track is sometimes longer or much shorter than the forecasts. The
option of computing the losses by unit of track length was not adopted, because the insurance sector in
general is less sensitive towards the exact track or track length. This drawback has to be kept in mind,
while analysing the results and track as well as intensity plots have to be consulted.

The insured value data is taken from SwissRe’s 2008 portfolio. The fact that the 2008 portfolio is used
for the hurricanes chosen from the 2005 season has a negligible influence on the result. Furthermore, the
losses computed only correspond to wind damages. No estimations were made for the consequences of
storm surge. An adequate modelling framework for this component is not yet ready. For details on Swiss
Re’s model the reader is referred to the Data chapter, section 3.5.

Tropical Cyclone Hazard: Meteorological Forecast
position (lon, lat) and intensity (central pressure)

↓
Geographical Spread

Holland Formula to compute wind field

↓
Vulnerability

Mean damage ratio f(wind gust)

↓
Portfolio

U.S. Portfolio 2008

↓
Loss Predictions

predicted pdf of losses

Figure 5.9: Methods of insurance loss predictions using ECMWF TC ensemble forecasts.

Because of the difficulties in the representation of correct pressure information, different loss modelling
cases were performed for the selected hurricanes. In a first step the ECMWF pressure forecasts were
taken as they were. In a second step, the ECMWF pressure forecasts were corrected for bias, using the
pressure bias found from the application of the storm tracking verification approach. Two lead times
were chosen per hurricane event. If available, the forecast ranges of 1 and 3 days were chosen. Especially
the second one is a highly relevant time for Swiss Re in terms of short-term management of losses (see
chapter Case Study, section 4.1). The hurricanes chosen for loss modelling are described in the Case
Study chapter, section 4.4.
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Chapter 6

Results and Discussion

In this chapter, the results of the storm tracking verification of the ECMWF TC ensemble forecasting
system are presented first. Then, preliminary results of the application of an object-based quality measure
to the ECMWF deterministic atmospheric model data are shown. Finally, the performed loss predictions
for 5 selected TCs are assessed.

6.1 Storm Tracking Verification of the ECMWF Tropical
Cyclone Ensemble Track Forecasting System

The aim for this first results section is to assess the ECMWF forecasting system of TCs with methods
commonly used in forecast verification by operational centres (see section 5.1). Forecast error statistics
were computed for hurricane events of the years 2005 to 2008 (see section 4.2). In this period some model
updates have occured as described in section 3.1.

In the following, the ECMWF track and intensity forecasts are discussed in terms of accuracy, reliability,
statistical consistency, skill and linear association (see chapter on Theories and Concepts, section 2.3
for definitions). An analysis of sensitivity of the forecast errors and biases towards the interpolation
technique, the model resolution change, the location over land or sea and the intensity of the hurricanes
is then presented. Finally, the question of equal likelihood of ensemble members is addressed.

6.1.1 Accuracy and Reliability

Position Errors and Biases

Figure 6.1 shows the direct position error DPE of ECMWF TC forecasts as a function of lead time for
the years 2005-2008. The boxplots represent the ensemble, which is compared to the operational forecast
(in green), the deterministic run of the EPS (control run CTL in violet) as well as to the NHC forecast
(in orange). The climatological and persistence prediction CLIPER (in grey) serves as a baseline for
forecast skill. The shift at lead time 0 between observations and initial conditions of the forecast can
be attributed primarily to the model resolution in the case of the ECMWF model and the post-storm
adjustment of best-track data in the case of NHC warnings and CLIPER forecasts. This problem was
already discussed in the methodology chapter, in section 5.1.1. The yellow and grey stars corresponding
to NHC and CLIPER errors respectively, indicate the value of the direct position error DPE for these
forecasts, if the whole predicted track is shifted by the difference between the respective forecast (CLIPER
or NHC) and ECMWF mean initial error. This can be seen as a way of assessing the uncertainty of the
direct position error DPE with respect to the problems of resolution and post-storm data corrections.

The accuracy of the ECMWF track forecasts decreases linearly with increasing lead time. The slope in
the DPE of the operational forecast is smaller (∼ 33 km for 12h additional forecast range) than the slope
of the median error of the ensemble (∼40 km/12 h). The increase in the mean error of the ensemble
is even larger with 50 km for 12 h additional forecast range. In an assessment of the forecasts in the
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years 2002 to 2004 by Van der Grijn et al. (2004), a slope of 45 km per 12h additional forecast range
was found for the operational forecast, as well as the EPS mean and the control run. In their study all
TCs of the mentioned time window were considered, which probably explains the slightly smaller slope
for the ensemble (not only hurricane force TCs as here). However, the operational error increase per
additional 12h forecast range is found to be much lower in figure 6.1 than in Van der Grijn et al. (2004),
indicating the importance of the resolution improvement from 40 km to 25 km for the track representation.

0 12 24 36 48 60 72 84 96 108 120
0

100

200

300

400

500

600

700

800

900

1000

F
or

ec
as

t d
ire

ct
 p

os
iti

on
 e

rr
or

 (
D

P
E

) 
[k

m
]

Forecast lead time [h]

 

 

ENS mean
ENS spread
OPER
CTL
CLIPER5
NHC

Figure 6.1: Direct position error of ECMWF operational and ensemble forecasts, climatological and persistence
CLIPER data and NHC official forecasts for the selected hurricanes of the years 2005 to 2008. Stars indicate
uncertainty introduced by initial position error.
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Figure 6.2: Sample size of ECMWF ensemble,
CLIPER and NHC official forecasts for the selected hur-
ricanes of the years 2005 to 2008.

The increasing difference between the ensemble
mean DPE and the median DPE indicates that
the error distribution of the ensemble becomes
more and more skewed with increasing forecast
range. Deviations from normality of the ensem-
ble forecasts lead to biases in the ensemble mean
(Stephenson and Doblas-Reyes, 2000). For posi-
tively skewed error distributions, as it is the case
here, the mean is drawn towards the large positive
values, whereas the median is more ”robust” to
such extremes. If one is interested in tendencies, a
notable advantage of the median over the mean is
that there is equal chance of forecasts falling either
above or below a specific value. The interquartile
range of the ensemble becomes larger as a result of
a widening error distribution. This may be due to
decreasing predictability for longer forecast ranges
as indicated by the strongly increasing average CLIPER error. Another problem is the decreasing sample
size for longer lead times as shown in figure 6.2. Indeed for the ensemble, the sample size is reduced by
70% of the initial sample size at 5 days lead time. This is considerable and induces a higher uncertainty in
the long-range forecast error computation. The decrease in sample size can be explained by the fact that,
when reaching the ”end” of the available best track data, meaning when the storm dissipates, the forecast
will contain the storm only in the short-range lead times. In the early phase of the storm, long-range
forecasts are available only after the storm’s age has reached the respective forecast range. Furthermore,
as mentioned in section 3.1.4, certain forecast members indicate early dissipation and are thus missing
in the statistic.
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The operational forecast is more accurate than 50% of the ensemble members between lead times 24 h
and 120 h. However, on average the operational forecast is affected by an error, which is included in
the interquartile range of the ensemble error distribution, meaning that on average there are individual
ensemble members that are as good as, or event better that the operational forecast. The control forecast
yields a higher error, than the operational forecast for lead times between 24 h and 108 h with a maximum
difference at around 60 h lead time. However, for 12 h and 120 h the errors of the two deterministic
runs are comparable. This gives an idea about the forecast time scale for which resolution probably
plays the most important role, namely around 1-4 days forecast range. When comparing the ECMWF
TC forecasting system as a whole, considering the ensemble and the operational forecasts, with the NHC
”human synthese” forecast (see Data chapter, section 3.2.1), the NHC performs better in the short-range.
From 36 h lead time up to 120 h, the ECMWF performs better. At 96 h to 120 h lead time, more than
half of the ECMWF ensemble members perform better than the NHC forecast.

Overall, considering the uncertainty indicated by the orange star coming from the system inherent error,
partly due to the ”inexact” representation of the initial position in the ECMWF analysis and partly due
to post-storm corrections of best track data, the two forecasting systems NHC and ECMWF are compa-
rable in terms of accuracy of the track position. Both ECMWF forecasting systems show some skill, when
compared to the baseline forecast CLIPER between lead time days 1 to 5. The good performance of the
climatological forecast for the 12 h forecast range has to do again with the uncertainty of the ECMWF
model initialisation.

The classical underdispersivity problem of today’s EPS is clearly apparent in figure 6.1. As mentioned
in the introduction, for an EPS to be statistically reliable the ensemble mean, when compared to the
observations should exhibit the same error as the average difference between the individual members and
the ensemble mean. In other words, the ensemble mean error should be reflected in the ensemble spread,
which should indicate the level of uncertainty inherent in the forecasting system. The underestimation
of the spread in this study augments for increasing forecast ranges and reaches 200 km for 120 h lead
time. The model is thus less and less capable of covering the whole range of physically consistent and
realistic evolutions. In Froude (2009), the difference between the ensemble mean error and spread was
found to be smaller. The latter study, however, analyses the performance of the ECMWF EPS model in
forecasting extratropical cyclones. This apparent difference in reliability of the ECMWF ensemble fore-
casting system in handling TCs and extratropical cyclones comes probably mainly from the difference in
the perturbation method used to generate the ensemble members. Apparently the tropical perturbations
targeted at TCs do not sample initial errors as well as perturbation done in the mid-latitudes (see section
3.1.4 of the Data chapter for details about the perturbation technique used by ECMWF in the tropics).
Underdispersivity can be seen as the symptom of the fact that today’s NWP models do not account for
all possible sources of error and especially underestimate the structural uncertainty caused by the model
parametrisation being inaccurate. Fovell and Su (2007) found evidence for significant track sensitivity
to cloud microphysics details, which supports the concept of conducting ensemble forecasts using not
only initial perturbations but also different model physics parametrisation in order to obtain an objective
measure of forecast uncertainty (Buizza et al., 1999; Pellerin et al., 2003; Krishnamurti et al., 1999).

Figure 6.3 shows the along track and cross track biases ATB and CTB. The corresponding error statis-
tics ATE and CTE are shown in the appendix, figure A.2. The latter figure as well as figure A.7 in
the appendix show that ATE is the dominant error component for forecast lead times between 12h
and 120h. For short forecast ranges the ATE dominance is not as pronounced as for longer ones, for
which ATE explains ∼ 65% of DPE . The underdispersivity problem is present in both error components.

The cross track component does not exhibit a pronounced bias. For short lead times the along track
component shows a small slow bias of 40 km on average for the ensemble, which is negligible, because it
is at the limit of the grid spacing of the EPS. In 2004, Van der Grijn et al. (2004) mentioned a strongly
negative ATB. This bias has been nearly removed, through the model changes that have occured since
2004. For long forecast lead times the TCs propagate on average too fast now. This may be explained
by two factors. Firstly, the significantly diminishing sample size has to be kept in mind. Secondly, the
long range forecast times contain a higher proportion of TC positions over land than short lead times
(see figure 6.10). Landfalling changes the way the TC evolves drastically, especially in terms of energy
source (Lohmann, 2009). The first negative, then positive bias in propagation speed might be indicative
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of difficulties in the representation of TCs’ vertical structure, intensity and energy budget. The non-
interaction between the atmospheric and the oceanic components may be one important reason for the
named structural errors.

It can be said that the propagation direction (resulting in a CTE) is more easy to handle for the model,
because it is more affected by the synoptic situation, than by the TC structure itself. The propagation
speed, however, seems to be more closely linked to the inner-core dynamics and thus processes that take
place at smaller spatial scales (Froude, 2009; Fovell and Su, 2007). This is how the dominance of the
along track component in the direct position error might be explained.
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Figure 6.3: Bias in along (a) and cross track (b) components of the ECMWF operational and ensemble forecasts
for the selected hurricanes of the years 2005 to 2008.

The analysis of the longitudinal and latitudinal errors in track forecasts is similar as the one above (see
figures A.4 in the appendix), because the definition of these components simply involve a rotation of the
reference axis from the direction of propagation of the storm to an axis pointing north.

Intensity Error and Bias

The growth rate of the intensity error is not linear. This can be seen in figure 6.4. In the case of the
ECMWF ensemble and operational forecasts, there is only a slight 5 hPa increase between initialisation
and lead time 72h. The general form of the central pressure error curve for ECMWF is concave, with
a high initial error, when compared to the NHC or even to the (D)SHIFOR baseline, of approximately
20 hPa. This initial error probably comes from the smoothing of extremes by the NWP model grid-
ding. The minimum pressure in the center of the storm is a localised phenomena that is present over
very small scales of a few tens of kilometres with a strong radial gradient leading to it. Even a 25 km
resolution does not allow such a strongly peaking intensity to be built up in the model. The reason,
why the NHC performs much better, is given partly by the fact that they can extrapolate directly the
observed pressure and do not need to perform an analysis like ECMWF, which smoothens the observa-
tional data and leads to a high initial error. The statistical ”no skill” intensity forecast also performs
better than ECMWF up to lead time 48 h for the same reason. Furthermore, NHC uses many models
and especially also local area models, which can resolve the small scale high intensity characteristic better.

The concave form of the ECMWF curve/levelling off of the NHC curve with decreasing/constant central
pressure errors for long-term forecast ranges is not significant. The following explanations are merely
suppositions. As already mentioned in section 6.1.1, lead times 84 h to 120 h are affected by proportion-
ally more cyclones over land (see also figure 6.10). Storms are generally less intense over land, because
they are practically deprived of their main energy source (Lohmann, 2009). Moreover, the described
drastic decrease in sample size (see figure 6.2) may also contribute to the levelling off in intensity error,
because storm dissipation plays an increasing role at these long lead-times. A forecast that forsees early
dissipation is not further penalised because it does not correctly represent the intensity. Even if, in fact
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such a dissipation forecast is even worse than a forecast that badly reproduces the observed intensity.
This artefact is difficult to remove from the present analysis, but it has to be kept in mind as a significant
factor influencing the error statistic. The central pressure error curve is different in the case of the NHC
and (D)SHIFOR forecasts. The sample sizes of these two models do not decrease as strongly as the one
of the ECMWF on the one hand, on the other hand it could also be interpreted as a sign that these
forecasting systems do not capture long term changes (strengthening or weakening of the cyclone) very
well and that given its physically based numerical integration the ECMWF is better at handling these.
The latter comment does also apply to the direct position error, for which the ECMWF model was also
the more accurate model for long-range forecasts.
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(a) Central pressure error
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(b) Central pressure bias

Figure 6.4: Central pressure error (a) and bias (b) of the ECMWF operational and ensemble forecasts, statistical
(D)SHIFOR intensity data and NHC forecasts for the selected hurricanes of the years 2005 to 2008. On the right
(a) negative values mean that the forecast pressure is too high.

There is a substantial average bias in the ECMWF ensemble as well as operational forecasts, with little
dependence on the lead time. Posterior model calibration could be done for practical applications like
insurance loss predictions to improve results from further modelling, which depend strongly on the cor-
rect representation of intensity. Because loss modelling at Swiss Re is done using only an information on
position and central pressure, the correction of the intensity bias can be done easily. Figure 6.5 illustrates
the implication of such a bias correction on the central pressure error and bias.

The NHC bias shown in panel (a) of figures 6.4 and 6.5 represents an average over all TC forecasts.
Numbers stem from the yearly verification reports. The long term NHC bias is very small and shows a
tendency for negative values in long-range forecasts (3-4 days, intensity underestimation). Beven et al.
(2008) discusses the long term intensity biases in NHC forecasts in detail.

For the insurance loss predictions presented in section 6.3.2, a central pressure bias correction was applied
by removing the ensemble average pressure error over 4 years from all ensemble members except for
the operational track (ECMWF deterministic, high resolution model). The operational intensity was
corrected by using a slightly lower value, also obtained form a 4 year statistic of the pressure error of
the operational forecast. As the pressure error does not depend strongly on the lead time, the applied
correction can be set constant. The magnitude of the correction is +21.7 hPa for the ensemble (members
1 to 51) and +15.3 hPa for the operational forecast (member 0). In this thesis insurance loss case studies
were taken from the seasons 2005 and 2008. The model resolution change may have a measurable effect
on central pressure forecast accuracy and bias (see section 6.1.5). For future applications thus lower
values of +18.1 hPa for the ensembles and +11.3 hPa for the operational forecasts, which were computed
for the events of the seasons 2006-2008 (after resolution change in February 2006) should be applied.
Investigations on the central pressure bias dependency on observed and forecast central pressure and
central pressure change between 2 time steps were conducted. These are presented in the appendix in
section A.4.
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(a) Central pressure error, after bias correction
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(b) Central pressure bias after bias correction

Figure 6.5: Central pressure error (a) and bias (b) of ECMWF operational and ensemble forecasts for the
selected hurricanes of the years 2005 to 2008 after bias correction (calibration). On the right (a) negative values
mean that the forecast pressure is too high.

After bias correction, the ECMWF EPS and operational forecasts are approximately equivalent in terms
of forecast accuracy, as each of the two systems were corrected individually for their bias. In terms of
accuracy, the ECMWF system improves after bias correction, when compared to NHC forecasts. The
ECMWF forecasts are on average equivalent or even more accurate than the NHC forecasts from the
forecast range of 2 days on and beyond. For the lead times 72 h to 120 h ECMWF is on average more
accurate than NHC by 5 hPa. The average error of the intensity forecast by the ECWMF EPS after bias
correction is around 18 hPa, which represents approximately one Category on the Saffir-Simpson scale.
For short lead times the error is slightly lower but there is still no clear dependency of the error on the
lead time as it is the case for the NHC forecast.

It seems that with a bias corrected ECMWF model, the latter should be prefered for lead times above
2-3 days, whereas for short lead times the NHC forecast is better. This observation makes sense from
a warning perspective. The role and primary goal of NHC is precisely to provide excellent short-range
forecasts. From an insurance point of view the longer range forecasts by ECMWF might be more adequate.

6.1.2 Statistical Consistency
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Figure 6.6: Underdispersivity in track components and
intensity forecasts.

In figure 6.6 the percental underdispersivity
(m−s

m
) of the ECMWF EPS found in the po-

sition and intensity forecasts is shown. The
underdispersivity relative to the mean error
m is greater for the central pressure forecast
than for the track components. As in the
case of accuracy, the propagation speed compo-
nent dominates underdispersivity in track fore-
cast.
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6.1.3 Forecast Skill

The skill of the track and intensity forecasts is shown in figure 6.7 and 6.8 respectively. Skill is com-
puted as a relative difference between the forecast error and the error of the trivial forecast (CLIPER,
(D)SHIFOR), normalised by the error of the trivial forecast (see section 5.1.4 in the methodology chap-
ter for detailed description). Skill of track and intensity forecasts summarises the statements of the
above two sections 6.1.1 and 6.1.1. Because of the high initial error in terms of track and intensity of
the ECMWF model, its skill is negative for the analysis time as well as the 12 h lead time forecast.
This is especially due to the very low climatological errors of the CLIPER and (D)SHIFOR models re-
spectively and might be attributed to the gridding and smoothing affecting the ECMWF model accuracy.

For both track and intensity forecasts all the examined models have skill for lead times beyond 24 h.
The NHC has more skill for short-range forecasts, whereas the ECMWF system is better on longer time
scales. Considering only the ECMWF forecasting system, the operational forecast has the highest skill
in terms of track forecast. The skill obtained from the ensemble median error in track and intensity is
always higher than the ensemble mean, implying that more than 50% of the members perform on average
better than indicated by the skill of the forecast mean.
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Figure 6.7: Skill of the position forecast by ECMWF and NHC for the selected hurricanes of the years 2005 to
2008 with respect to CLIPER.
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Figure 6.8: Skill of the intensity forecast by ECMWF and NHC for the selected hurricanes of the years 2005
to 2008 with resprect to (D)SHIFOR data. Left: Skill of ECMWF central pressure raw forecasts. Right: Skill of
ECMWF bias corrected central pressure forecasts.

The computation of a skill measure for both track and intensity does not only allow to measure the qual-
ity of forecasts with respect to baseline forecasts, but it also provides a framework to compare these two
principal forecast elements of TCs. As mentioned in other scientific studies (Davis et al., 2008; Franklin,
2006, 2009) and even in the American press (Spinner, 2009), the present modelling efforts in NWP show
satisfying skill in TC track forecasts, but provide only limited performance in terms of intensity forecasts
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with skill values around 20% (e.g. Froude (2009), Froude et al. (2007), Davis et al. (2008)). The annual
verification reports by NHC also show that progress in the last decade in this matter has been significantly
slower than in the case of track errors (Franklin, 2009). The increase in track forecasting skill has been
substantial in the last few years, starting from values around 0 in the 1990, following Franklin (2009)
and reaching values up to 50-60%, even 80% in the case of the ECMWF operational track forecast in
2005-2008, as found here. However, the decrease in track error for short lead times has been only of a few
tens of km as shown in Franklin (2009). Following NHC yearly forecast verification reports (e.g. Franklin
(2009)) in the case of intensity forecast errors the situation since 1990 has evolved only slightly by 5 hPa
decrease at maximum. Skill has, however, increased by around 10 %, still remaining very low, with values
found in this work of around 20%, maximum 30% in the case of the bias corrected ECMWF forecast in
2005-2008. The increase in skill of track and intensity forecasts, which is not reflected in a corresponding
decrease in errors may indicate an improvement in predictability in the last decade. This tendency might
be induced by the better spatial coverage of measurements. To our knowledge the influence of changes
in observational density has not yet been thoroughly studied in the case of TC forecasts. Froude et al.
(2007) have investigated the impact that observations of different types have on the prediction of the
extratropical cyclones. They used forecasts integrated from analyses that were constructed using reduced
observing systems. Since the skill of TC forecasts, at least in the short term, strongly depends on the NWP
model initialisation, observation systems effects should be investigated as well in the case of TC forecasts.

The lower skill of intensity forecasts, when compared to the skill of track forecasts can be attributed to
the fact that intensity description involves a range of scales. It especially also depends on very small scale
microphysical processes (Fovell and Su, 2007; Davis et al., 2008). Froude (2009) found that TCs that
move into the extratropics are affected by higher average intensity errors than storms that originate in
the extratropics. This shows the importance of the current ”intensity” problem in forecasting TCs and
their effects. NHC has set a goal of improving the hurricane intensity forecasts by at least 20% in 5 years
and 50% in 10 years (Spinner, 2009). Thus developments can be expected in the next few years in this
area.

6.1.4 Correlation Analysis between Forecasts and Observations
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Figure 6.9: Correlation analysis for latitude, longitude,
central pressure and central pressure change as a function
of lead time. The full lines represent the Pearson correla-
tion between ensemble forecasts and the observations, the
dashed lines represent the correlation between the opera-
tional forecasts and the observations.

A good summary of linear association between
forecast and observations for both track and in-
tensity is given by the Pearson correlation shown
as a function of lead time in figure 6.9. On average
over all lead times the best correlation is reached
by the longitudinal track component forecast. It
is important to point that this is not a contradic-
tion to the dominance of the longitudinal error in
terms of accuracy of the track position (see fig-
ure A.7 in the appendix). Correlation is a relative
measure and can indicate good performance inde-
pendently of the accuracy, as it is normed by the
variances of the forecast and observation variable
of interest. Moreover, the difference in correla-
tion between latitude and longitude is negligible
(0.99 on average over all lead times for longitude
and 0.96 for latitude). However, the correlation of
forecast and observation in the case of pressure is
clearly weak (0.33 on average). This might be due
to the bad representation of pressure changes over
time, meaning the model seems to be affected by
a certain inertance concerning pressure changes.
Correlation of pressure changes in the model, when compared to the changes found in the observations
is very low (-0.01 on average). The simulation of several hurricane examples (hurricanes used for loss
predictions, see appendix figures A.17 to A.23) showed that the model might indeed be too slow in the
intensification phase but also too reluctant in the attenuation.
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6.1.5 Sensitivity Analysis of Forecast Errors

In the following sections the sensitivity of the above results towards different elements is analysed, such
as the used interpolation method, the model resolution change, the hurricane intensity and landfalling
properties as well as towards effects of the cyclone’s location over land or sea. For all these assessments
one common problem will always be present, namely the problem of difference in sample size between
the groups to be compared. The decrease in sample size for longer forecast ranges has to be kept in mind
as well. Figure 6.10 summarises the sample sizes as a function of lead time for the ensuing sensitivity
analyses.
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Figure 6.10: Sample sizes for investigated years, sensitivity towards ECMWF model resolution change in
February 2006, land/sea effects and the intensity/landfalling groups.

Sensitivity towards Interpolation Method

The method used to interpolated the data in time does not affect the results obtained for the track
and intensity statistics. A detailed description of the sensitivity of the results towards the interpolation
method for one hurricane example event can be found in the appendix in section A.3.1.

Sensitivity towards Model Resolution Change

The ECMWF model horizontal and vertical resolution change appears to have a positive effect on both
positional and intensity forecast accuracies. The DPE diminishes for long lead times, which goes in hand
with a weaker error growth for increasing lead times (see figure 6.11).

The results are affected by differences in the sample size. Further on, the season 2005, in which many
strong hurricanes occured, is compared to 3 other years of lower activity.

Sensitivity towards Hurricane Intensity and Landfalling

The influence of hurricane event sampling on the error statistics was investigated and the results are
shown and described in the appendix in section A.3.2. Properties of the whole TC track were used as a
classifying element. The different analysed groups are presented in section 4.2 of the case study chapter.
Track and intensity errors and biases are not found to be highly influenced by the intensity and landfalling
properties of the TC.
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Figure 6.11: Direct position error for different model resolutions. ECMWF model resolution changed in February
2006 (see Data chapter, section 3.1).
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Figure 6.12: Error in central pressure forecast, differences potentially due to ECMWF model resolution change
in February 2006. On the right negative values mean that the forecast pressure is too high.

Sensitivity towards Location over Sea/Land

When analysing the track and intensity error dependency on land/see effects, differences in available
observations have to be kept in mind. Land regions are generally better covered by observations, which
improves the analysis and short term forecasts. However, it also helps providing better best track data,
which in turn implies a harder benchmark. These arguments may apply in the case of the track and
intensity errors shown in figures 6.13 and 6.14. In all these graphs, the error over land is lower for
short-range forecasts, when the analysis step was probably made around landfall time. On longer time
scales the error however is much higher, which might be due to cases just after landfall, from forecasts
that were initialised over the open sea and are then compared to the harder observation benchmark.
These suppositions are only hypotheses and have to be verified by computing the proportion of forecasts
initialised over sea and over land for all lead times. The smaller pressure error over land for short lead
times might be reinforced by the fact that storms are stronger over the sea and thus the forecasts are
generally affected by higher errors. The fact that the land DPE, CPE and CPB curves are less smooth
than the ones for TC positions over sea is probably due to the much smaller sample size of TC positions
over land.
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Figure 6.13: Error in track forecast, direct position error, separated into land and sea locations of the cyclone
over land/sea.
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Figure 6.14: Error in central pressure forecast, sensitivity towards location over land/sea. On the right negative
values mean that the forecast pressure is too high.

6.1.6 Equal Likelihood Analysis of Ensemble Members

Figures 6.15 and 6.16 show the number of times each ensemble forecast member was the best in terms
of track or pressure respectively, when compared to the observation for each lead time. Figures 6.15 and
6.16 panel (a) show the statistics for all the members including the operational forecast. On the right the
same analysis is made but including only ensemble members at the EPS model resolution. The sample
size decreases with longer forecast range for the reasons mentioned in section 6.1.1.

No statistical test of significance of the results shortly described in the following was made, only tenden-
cies and hypotheses are presented. From the point of view of the track the best forecast seems generally
to be given by the operational run for all lead times. There is no clear preferential member for long
forecast ranges. On short time windows, there seem to be certain members that perform regularly better
than others. Some individual members stick out up to lead time 48 h. The control run is clearly not
regularly the best ensemble member, which emphasises the added value of an ensemble forecast over a
deterministic one at the same resolution.

In the case of intensity the best forecast is generally given by the operational run, however with a less
clear dominance than in the track forecasts, especially for long forecast ranges. The first few members up
to member 20 seem to be more frequently the best available. The control run however is astonishingly
rarely the best member in terms of central pressure. The bias in central pressure forecast may be a reason
for this, giving advantage on average to members, which forecast lower central pressure than the control
run.
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Figure 6.15: Likelihood of ensemble members in ECMWF track ensemble forecasts. Frequency at which indi-
vidual ensemble members yield the best track forecast for the indicated lead times (vertical axis). The numbers in
parenthesis show the sample size for each lead time. The graph on the left (a) shows the ensemble including the
operational forecast. The first column from the left corresponds to the operational track, the second to the control
run. The graph on the right (b) shows the same statistic for the ensemble alone. The first column from the left
corresponds to the control run, the following to the ensemble members with increasing number.
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Figure 6.16: Likelihood of ensemble members in ECMWF central pressure ensemble forecasts. Frequency at
which individual ensemble members yield the best central pressure forecast for the indicated lead times (vertical
axis). The numbers in parenthesis show the sample size for each lead time. The graph on the left (a) shows the
ensemble including the operational forecast. The first column from the left corresponds to the operational track,
the second to the control run. The graph on the right (b) shows the same statistic for the ensemble alone. The
first column from the left corresponds to the control run, the following to the ensemble members with increasing
number.
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6.2 Object-Based Quality Assessment of ECMWF deterministic
Tropical Cyclone Forecasts

In this section, first results of an adaptation of the SAL framework (Wernli et al., 2008) to TCs are pre-
sented. The primary goal of this master thesis with respect to object-based verification was to formulate
a proposition for a new method. A thorough testing and application to different case studies and for
different models is out of the scope of this project. Only the event of hurricane Ike of the season 2008
could be investigated here. The sample size thus consists of 25 forecasts along the hurricane track and 6
lead times for each (12 h, 24 h, 48 h, 72 h, 96 h, 120 h). Sometimes no object is identified, because one
of the established conditions described in the methods chapter, section 5.2.2 could not be fulfiled. The
results are preliminary, they may, however, point out some interesting aspects.

In figure 6.17, the track of hurricane Ike is shown with indications of changes in intensity in terms of
the Saffir-Simpson Scale classification. The three dates indicate times, from which examples of identified
objects were chosen and presented in section 6.2.2. In the following section, the quality of the ECMWF
analysis as a verifying observation is discussed. First verification results are shown in section 6.2.3.

Figure 6.17: Track of hurricane Ike 2008. The colors indicate the intensity in terms of the Saffir-Simpson Scale
sategories see chapter Theories and Concepts, section 2.2. The 3 dates indicate times from which examples of
identified objects were chosen and discussed in section 6.2.2

6.2.1 Quality of Analysis as Verifying Observation

In order to be aware of the quality of the ECMWF analysis as a verifying observation, the minimum
sea level pressure found in the objects identified in the ECMWF analysis was thus compared to the
NHC central pressure observations. The outcome of this investigation is shortly presented here. Further
aspects, like the comparison of the location property are shown in the appendix in figures A.14 to A.16.

With respect to position, the ECMWF analysis exhibits almost perfect correlation with NHC observa-
tions. Furthermore, the figures A.14 to A.16 in the appendix show that the correspondence is substantially
better in the case of the analysed position than in the forecast position. The central pressure values in the
objects from the ECMWF analysis, however, is different from the best track data of NHC. A correlation
of 0.55 is found in the case of hurricane Ike. In terms of pressure, the 24 h forecast is better compared to
NHC data than the analysis (see figure A.16 in the appendix). This shows the limitations of the ECMWF
analysis as a verifying observation.
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Figure 6.18 shows the analysed central pressure by ECMWF as a function of observed central pressure
values by NHC. Perfect correspondence is indicated by the diagonal line. Good correspondence is found
for NHC values above 975 hPa. Below this pressure threshold the model seems to have greater difficulties
in accurately representing central pressure. The dependency on the location on the track of the different
values reveals an interesting pattern. It seems that good correlation is obtained in the beginning and
the end of the track (dark blue and dark red points). In the parts of the track, when intensity changes
rapidly due to landfall in Cuba, the analysis data do not correlated well with NHC observations. It might
be argued that this is a confirmation of the previously emitted hypothesis that the model is too slow in
adaptation and exhibits a certain inertance (see section 6.1.4).

930 940 950 960 970 980 990 1000 1010
930

940

950

960

970

980

990

1000

1010

NHC Observed Central Pressure [hPa]

E
C

M
W

F
 A

na
ly

se
d 

P
re

ss
ur

e 
[h

P
a]

 

 

T
im

e 
st

ep
s 

al
on

g 
th

e 
tr

ac
k

5

10

15

20

25

30

35

40

45

50

Figure 6.18: Analysis minimum pressure compared to NHC minimum pressure. The colours indicate the time
in the progression of the storm. Dark blue points stem from the beginning of the track and dark red points from
the end of the track.

6.2.2 Examples of Pressure and Wind Distributions in Identified Objects for
Hurricane Ike

In this section, 3 examples of TC objects identified with the procedure presented in the methodology
chapter, section 5.2.2 are presented. The pressure and wind distributions in the objects are shown in
figures 6.19 to 6.21 for the respective times in the life of hurricane Ike (see figure 6.17). It has to be
emphasised that these figures only fulfil a qualitative purpose of giving an idea of the structures found at
3 key points in the progression of the storm. The first example is taken just before/at landfall in Cuba.
The second example is taken, when the storm is over sea in the Gulf of Mexico and the last one during
landfall on the continent. Table 6.1 lists a few important properties of the selected objects.

Differences in form, in area, in maximum wind speed, in wind and pressure distribution in the object
and in destructive potential (kinetic energy) can be observed. What is not shown here, but also of great
importance, is the difference in location of the low pressure center. The wind reinforcement on the right of
the storm’s center is due to the cumulative effect of the storm’s displacement and the counter-clockwise
rotation of air around the low pressure center. The effects of wind structure and object area on the
resulting destructive potential is pronounced in the last example. The wind ring is much more peaked
in the 72 h forecast than in the analysis or the 24 h forecast. Combined with a larger object area this
induces a higher integrated kinetic energy and thus points towards a greater destructive potential.
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Table 6.1: Summary of properties of hurricane Ike TC objects for the chosen dates. LT stands for lead time, A

for area, Umax stands for the maximum wind found in the object, IKE stands for integrated kinetic energy and
”land” indicates the percentage of cells containing land.

LT A [105 km2] Umax [m/s] IKE [TJ] land [%]

0h 1.76 32.3 29.9 21

08.09 00:00 UTC 24h 1.69 32.1 21.9 23

72h 1.63 31.2 29.9 11

0h 6.49 34.9 99.3 4

11.09 12:00 UTC 24h 7.58 36.7 104.9 5

72h 7.12 35.4 100.2 3

0h 4.81 29.8 34.3 77

13.09 12:00 UTC 24h 4.10 33.5 44.3 70

72h 5.63 35.1 65.9 64
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Figure 6.19: Identified object for the 08.09.2008 00:00 UTC. Pressure distribution in the upper row (a) and wind
distribution in the lower row (b). Propagation direction is to the West. Left: analysis. Middle: 24 h lead time
forecast. Right: 72h lead time forecast. The objects are not georeferenced. Hot colours show low pressure/strong
wind speeds, cold colours show high pressure/low wind speeds.
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(b) Wind distribution

Figure 6.20: Identified objects for the 08.09.2008 00:00 UTC. Pressure distribution in the upper row (a) and
wind distribution in the lower row (b). Propagation direction is to the North-West. Left: analysis. Middle: 24 h
lead time forecast. Right: 72 h lead time forecast. The objects are not georeferenced. Hot colours show low
pressure/strong wind speeds, cold colours high pressure/low wind speeds.
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(b) Wind distribution

Figure 6.21: Identified objects for the 08.09.2008 00:00 UTC. Pressure distribution in the upper row (a) and
wind distribution in the lower row (b). Propagation direction is to the North/North-West. Left: analysis. Middle:
24 h lead time forecast. Right: 72h lead time forecast. The objects are not georeferenced. Hot colours show low
pressure/strong wind speeds, cold colours high pressure/low wind speeds.
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6.2.3 Structure-Amplitude-Location Components for Hurricane Ike

Preliminary results for one single case study are shown in this section. The aim here is to present a few
advantages of the novel assessment method and show qualitative aspects of the end product.

Figure 6.22 is a 3-dimensional illustration of the performance of the model for 6 chosen lead times with
respect to the 3 error components structure, amplitude and location. Plots with only 2 components at a
time are shown in figure 6.24. Figure 6.23 shows the empirical cumulative distribution of the individual
error components.

In general 2 observations can be made. These results seem to confirm the fact that the position error
(location component) is lead time dependent and augments with forecast range. This is well illustrated
by the regular colour progression from blue to red of the median error with lead time in the legend of
figure 6.22. This interpretation is confirmed by figure 6.23 (a). The second result from this single case
study is that the structure and amplitude error do exhibit a slight lead time dependency in the short-
range up to 48 h. Beyond this time window structure and amplitude errors are comparable to errors from
shorter ranges as can be seen in panel (b) and (c) of figure 6.23 and from the evolution of the black forms
representing the median error of the different lead times in amplitude and structure in figure 6.22.
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Figure 6.22: SAL summary for hurricane Ike. Different forms are used for each lead time. The black forms
indicate the respective median errors for each lead time in terms of structure and amplitude. The median error
in location is shown in the corresponding colour in the legend.

From the 3 panels in figure 6.24 a tendency of amplitude underestimation can be detected. Structure and
location however does not seem affected by a systematic error. A slight correlation between amplitude and
structure can be deduced from figure 6.24 panel (b), which indicates a certain redundancy of information
in the 2 components.
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(a) Empirical cdf for location error component.
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(b) Empirical cdf for amplitude error component.
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(c) Empirical cdf for structure error component.

Figure 6.23: Empirical cumulative distribution functions (cdf) for the error components of the SAL quality
measure for hurricane Ike.
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(a) Amplitude and location error components.
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(b) Amplitude and structure error components.
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(c) Location and structure error component.

Figure 6.24: Error components of the SAL quality measure for hurricane Ike.
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6.3 User-Oriented Assessment: Verification of Insurance Loss
Predictions

In order to assess the value of ECMWF ensemble forecasts for the reinsurer Swiss Re, loss predictions
were made using the meteorological input data and the company’s loss modelling system for 5 extreme
events of the past few years. Two forecast ranges, 1 and 3 days, were considered. The chosen events
are described in section 4.4. Following the results from section 6.1 a bias correction in central pressure
derived from the average bias over 4 years (2005-2008) in North Atlantic hurricane data (SS cat ≥ 1) was
applied to the ECMWF forecasts and the impact of this correction on the insurance loss predictions was
studied. The forecast track and intensity fields for all events are shown in the appendix figures A.17 to
A.23 as well as the probabilistic insurance loss prediction results in figures A.25 to A.29. The different
events are not discussed individually here, but single aspects are drawn from each one of them.

In the following the assessment framework is shortly discussed and in section 6.3.2 the results of the
performed chain modelling case studies of insurance loss predictions using ECMWF TC forecast data are
presented.

6.3.1 Assessment Framework for Loss Predictions

Loss predictions were performed as described in the methodology chapter section 5.3, applying the tradi-
tional procedure of Swiss Re. Observed losses are obtained from NHC best track information. Predicted
losses are computed from track and intensity forecasts. Following problems are associated with such an
assessment framework:

1. The observed and forecast tracks are not equivalent in length, which highlights the need for a more
equitable measure. Damage per track length is not fair because the value and vulnerability is not
uniformly distributed in space. A categorical framework with certain loss threshold values could
help solving this problem. Another possibility to avoid track length dependence of triggered losses
would be to limit the assessment only to the forecast range. This would be honest for the model,
but not useful for Swiss Re. For the reinsurance company the total loss is important.

2. The observed losses do not represent the total amount actually paid by the company. The compu-
tations correspond to ”from ground up” losses, without insurance conditions. Furthermore there is
a high uncertainty in the value distribution and the mean damage ratio.

3. The assessment done in this report consists of 5 strong landfalling storms of the last few seasons.
The number of events is not representative to attribute general validity to the statements below.
In the best case, they sketch important tendencies.

6.3.2 Loss Prediction Case Studies

The under/overestimation of losses with respect to observations are presented for each event and forecast
range in table 6.3. For ECMWF, results are shown for raw data (biased) b and bias corrected data c.
Loss prediction errors from the NHC and characteristic errors from the predictions using ECMWF data
are shown. Average values are indicated only for better overview and qualitative purposes. They are
not estimated in a consistent way, as different lead times are combined. Furthermore, the uncertainty in
these values is high as indicated by the standard deviations.

Generally, the loss predictions are underestimated by ∼ 80% on average, when using the ECMWF EPS
raw forecasts. The operational raw forecast performs better with only ∼ 30% average underestimation.
When forecast central pressure values are bias corrected the underestimation problem is less pronounced
with values around ∼ 10% to ∼ 40% depending on the ECMWF error characteristic (control run, median
or mean error). The error distribution in predicted losses has a negative skew. The median of the error
distribution is higher than the mean error. Together with the underestimation tendency, this indicates
that less than 50% of all members point towards the high observed losses. The operational forecast, on
average overestimates damages after bias correction mainly due to the case of hurricane Ike 31 h before
landfall, where the losses are overestimated by ∼ 400%.
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Table 6.3: Summary of loss prediction performance by NHC, ECMWF TC EPS mean error, the median error,
the ECMWF operational run as well as the control run. The numbers indicate percentage of underestimation
(negative) or overestimation (positive) when compared to the losses generated by the observed track.

Forecast NHC EPS MEAN EPS MEDIAN OPER CTL

b c b c b c b c

Ike -79 h -90 -40 +78 -64 +12 -16 +21 -20 +236

Ike -31 h -73 -28 +120 -49 +53 +205 +441 -50 +47

Gustav -72 h -58 -53 -38 -93 -43 -65 -1 -93 -38

Gustav -24 h -34 -58 +59 -58 +61 -30 +47 -48 +81

Katrina -107 h -96 -100 -86 -100 -91 -97 -74 -100 -82

Katrina -71 h -88 -84 -63 -86 -67 -51 -14 -84 -51

Katrina -23 h -53 -77 -45 -80 -53 -26 +37 -80 -58

Rita -68 h -66 -95 -67 -98 -82 -77 -35 -99 -91

Rita -44 h -14 -77 -1 -80 -15 0 +142 -88 -55

Wilma -83 h -89 -98 -93 -100 -100 -100 -99 -100 -100

Wilma -23 h -69 -91 -62 -92 -66 -77 -43 -89 -53

MEAN −66 −73 −18 −82 −36 −30 38 −77 −7

STD 26 25 72 18 56 85 149 26 96

More cases of loss overprediction are found in 2008 than in 2005. This might be a confirmation of the
tendency shown in section 6.1.5, where the sensitivity of the track and intensity forecast errors to model
resolution change in 2006 is discussed. The bias corrected pressure forecasts for hurricane Ike is indeed
1-2 Saffir-Simpson Scale Categories too low, which obviously increases the loss estimates substantially.
In the case of hurricane Rita at 44 h before landfall the overestimation by the operational forecasts is due
to an unusual recurving of the track (see figure A.23, green line in the appendix). Loss overprediction
for hurricane Katrina 23 h before landfall by the operational forecast is induced by underestimation of
pressure after landfall. The same is true for the operational and EPS forecasts in the case of hurricane
Gustav 24 h before landfall. The results of section 6.1.5 already suggested that the bias correction is
dependent on whether the hurricane is over land or sea. But the sample size over land is not large enough
to estimate a robust, specific correction value.

No clear changes with the introduction of bias correction were observed for the cases of hurricane Katrina
107 h before landfall in New Orleans and hurricane Wilma 83 h and 23 h before landfall. Hurricane Rita
at 68 h before landfall can also be classified into this group, in which no improvement is reached with
bias correction. In these cases the track forecast plays an important role. The forecast for hurricane
Katrina at 107 h before landfall does not reach land. Hurricane Wilma is a ”binary” high loss or no loss
case because landfall does not seem certain in Florida at both 83 h and 23 h lead time. It finally passed
over Florida as a Saffir-Simpson Category 3 hurricane. Hurricane Rita is a classical example of a track
misforecast. At 83 h before landfall the underestimation of losses is probably due to the fact that no
major city and industrial region is hit.

If the question of landfall is clear, the track does not play a major role any more for loss estimations as
can be well illustrated, when comparing results of the bias corrected cases of hurricane Katrina 71 h and
23 h before landfall and hurricane Rita 44 h before landfall. The misforecast in the track of hurricane
Rita does not affect the goodness of the loss predictions. Except for the operational track, which is much
longer and induces an overestimation of losses, the ECMWF EPS forecast performs very well in terms
of loss predictions. On the contrary, the 2 Katrina track forecasts are good, but the pressure is too high
even after bias correction, which results in an underestimation of observed losses. From this we can con-
clude that if landfall is certain, and the value distribution of the region 500 km around is approximately
uniform, the pressure information is more important for good loss estimations.
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NHC forecasts underestimate observed losses for all case studies, which might be due to the slight neg-
ative bias that is found in pressure for long forecast ranges in the case of the chosen hurricanes. This
would mean that it does not trigger high enough damage further inland from the landfalling point. On
the long term mean, however, NHC intensity forecasts do not need a bias correction for their use in loss
prediction (Franklin, 2006, 2009).

In table 6.5 a few summary statistics with respect to the performance of the ECWMF EPS forecast
members are shown. The number of members is indicated in absolute value (out of 52 members), which
are included in a certain range of the observed losses. Indications are made in the exponent if the
operational high resolution forecast or the control run is included. In general the number of members in
the respective margin of the observed losses increases with bias correction. The same observations that
are made above for the individual cases hold here as well. The ECMWF operational forecast in regularly
amongst the best members. The control run seems to perform much better in the 2008 cases, which
might be linked to the resolution change.

Table 6.5: Summary of performance in loss predictions by the ECMWF TC EPS. The number of ensemble
members that yielded loss values within ± 10%, 20%, 50% of the observed loss are indicated. The presence of
a small O in the exponent means the operational high resolution forecast is included, C means the control run is
included.

Forecast ENS 10% ENS 20% ENS 50%

b c b c b c

Ike -79 h 4 5 10 O,C 7 19 O,C 18 O

Ike -31 h 3 5 9 10 21 C 25 C

Gustav -72 h 0 6 O 0 8 O 0 31 O,C

Gustav -24 h 0 1 0 9 13 O,C 21 O

Katrina -107 h 0 0 0 0 0 0

Katrina -71 h 0 1 0 3 O 0 8 O

Katrina -23 h 0 3 0 5 1 O 23 O

Rita -68 h 0 1 0 3 0 10 O

Rita -44 h 1 O 5 2 O 10 4 O 19

Wilma -83 h 0 0 0 0 0 0

Wilma -23 h 0 3 0 4 0 14 O

MEAN 1 3 2 5 5 15

STD 1 2 4 4 8 10

55



Chapter 7

Conclusions and Outlook

In this report the performance of the ECMWF model with respect to TC forecasts was assessed in three
different ways. First, the TC ensemble forecasting system, which is embedded in the ECMWF operational
deterministic and EPS model was analysed using a storm tracking approach to forecast verification. Then,
the framework for a novel object-based verification measure was set up with the aim of characterising
the representation of TC features in the operational ECMWF deterministic model. Finally, the user-
oriented aspect of chain-modelling using meteorological ensemble forecasts for medium-range catastrophe
loss predictions in the insurance sector was investigated.

7.1 Strengths and Weaknesses of the ECMWF Tropical Cyclone
Ensemble Forecasts

The one dimensional verification of TC ensemble forecasts by ECMWF involved the statistical analysis
of track and intensity errors for 29 hurricanes of the seasons 2005 to 2008. The position and the central
pressure were verified. The best available verifying observation of these variables are given by NHC.
Different forecast properties like accuracy, skill, reliability in terms of calibration (bias), correlation and
statistical consistency of the ECMWF TC EPS were assessed. Furthermore, the performance of the
model was compared to NHC warnings. The following conclusions can be drawn from this analysis.

1. Uncertainty and significance of results
The uncertainty in the obtained results is high. No statistical test was performed in order to prove
the significance of the estimations and statements. On the one hand the data availability is low.
Only 4 seasons with approximately consistent model state could be analysed here. Because of
the stakeholder’s perspective of a reinsurance company, only high impact events were chosen. On
the other hand regular model improvements in the last few years make it difficult to analyse a
homogeneous sample of forecast events. It is thus important to recall that only tendencies could
be sketched in this report. Theoretically, for a consistent and thorough analysis of the model
performance a series of hindcasts of historical events with the most recent model formulation should
be performed by ECMWF. An alternative is to include weaker tropical storm events into the
investigation. The outcome with respect to intensity forecasts would probably change in this case.

2. Accuracy

• Initial errors: Initial positioning and intensity errors in the ECMWF operational and EPS
data of around 60 km and 20 hPa were found. The initial central pressure error is probably
mainly due to the inability of the ECMWF model to resolve the small scale features in the
present grid spacing. The spatial scale of the storm’s eye is of approximately the same size as
the model resolution. Thus, a number of crucial processes need to be parametrised. Present
parametrisations apparently are not able to fully capture such strong events as hurricane force
TCs.
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• Track forecast error: The accuracy of track forecasts is lead time dependent and decreases
linearly with forecast range by 40 km per 12 h for the ensemble median error. It reaches
∼ 250 km at 3 days, the business relevant lead time for Swiss Re. For long forecast ranges the
track error distribution is positively skewed, more than 50% of all members perform better
than indicated by the mean error. Further investigations of the track errors with respect
to the influence of propagation speed and direction showed that the propagation speed error
constitutes up to ∼ 70% of the direct position error.

• Intensity forecast error: The mean intensity error of ECMWF forecasts is approximately
lead time independent and amounts to about ∼ 22 hPa. The independence of the intensity
error on forecast range is expected to be due to the inability of the model to resolve the peaking
low pressures in intense storms. The pressure evolution being strongly linked to land/ocean-
atmosphere interactions, the lack of coupling between these compartments might be one severe
disadvantage. Another problem might be given by the microphysics parametrisation that
influences the storm’s development in terms of intensity.

• Sensitivity of forecast errors: The sensitivity of the track and intensity errors with respect
to changes in resolution, land-sea effects and the influence of sampling of events with respect
to intensity were conducted. All results exhibit high uncertainty, but resolution is suspected
to play a major role as well as the effects of land and sea. The sample size is too small for a
robust analysis of event sampling dependency of the results.

3. Reliability

• Track forecast bias: In order to investigate biases in track a signed error had to be computed,
using a decomposition of the position error into propagation speed and direction. No bias was
found in the latter, however in the case of the propagation speed a pronounced rapid bias for
long forecast ranges was detected.

• Intensity forecast bias: An average intensity bias of ∼ 20 hPa for the ECMWF ensemble
forecasts and ∼ 15 hPa for the ECMWF operational forecast were found.

4. Statistical Consistency of the ensemble forecasts
The ECMWF ensemble forecasts are underdispersive in terms of intensity and track. This indicates
that the EPS does not, on average, cover the whole possible range of developments. The model
overconfidence is stronger for the intensity with a maximum relative underdispersivity of ∼ 80%
against ∼ 50% for track forecasts.

5. Skill

• Track forecasts by ECMWF are characterised by good skill for forecast ranges of 2 days
and longer. Skill values of ∼70% for the operational forecast and 40-50% for the EPS were
obtained for 4 to 5 days lead time.

• Intensity forecasts by ECMWF were found to have much lower skill than track forecasts
with values below ∼20%.

• Comparison of ECMWF with NHC: In the very short range of 1 day, human made
NHC forecasts were found to be more skillful than ECMWF forecasts. Furthermore, the NHC
warnings essentially aim at giving a decision basis for administrative evacuation measures.
These are mostly taken around 1-2 days before landfall.

6. Correlation
High correlation between ECMWF ensemble forecasts and observations was found in the case of
track forecasts (ρ =∼ 1) and low correlation in terms of intensity (ρ =∼ 0.3). The latter may be
explained by the even lower correlation in pressure change, indicating that the model might be too
inert, which prevents rapid evolutions to be forecast.
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7.2 Object-Based Tropical Cyclone Verification:
Gained Insights and Possibilities

The main objective for a new multidimensional object-based quality measure was to gain a holistic in-
sight into how the ECMWF model handles TCs. Pointing out the main problems in TC representation
in the model and giving a basis for explaining possible inabilities were further motivations for suggesting
a new assessment method. The SAL concept presented by Wernli et al. (2008) for precipitation fields
was found to be very suitable. The formulation of different demands on such a new measure in the
methods chapter, section 5.2.1 helped to identify important aspects in TC representation in the model.
Moreover, identifying general desirable properties of a verification measure was very profitable in terms
of questioning and reflection on the verification process.

The multidimensional perspective of forecast verification given by different error components depicts a
more holistic overview of model performance and is more stringent, because it does not allow compen-
sation of different error types. The different feature properties are treated separately in specific error
components. The dynamical and structural elements of TCs are taken into account. The SAL concept
applied to TCs is easily adaptable to the interest of a specific model user. Other physical variables
than the ones used here may be used to formulate the error components. The formal aspect of clarity in
communication is given by the fact that one summary descriptive component is formulated for each aspect.

The object-based multicomponent measure may provide an excellent framework to compare different
models or to evaluate the performance of one specific model with respect to different events. Moreover, a
basis for understanding problems in process representation is given. It is an informative quality measure
in this sense. Certain problems found in the one dimensional storm tracking approach were confirmed in
the case study of hurricane Ike. The misrepresentation of the surface pressure in the model is one con-
firming example. Finally, the new assessment framework is very versatile and seems promising. Further
testing and case studies are of course needed in order to assess the full capabilities of this quality measure.

7.3 User-Oriented Verification

The conclusions drawn from the project collaboration with Swiss Re are summarised in two sections. In
the first one, somewhat more general, personal conclusions are presented. The second section is addressed
to the company.

7.3.1 User Needs and Specificities

In the user-oriented part of this project a few general observations about user needs were made that are
here shortly summarised. The statements are based on personal insights, gained in this project and not
on quantitative results.

Different types of answers and solutions are necessary for different users. User interests weight the var-
ious forecast aspects in a specific manner. The picture obtained from such an assessment is thus more
one-sided but also reveals interesting questions. In the present case, the track information for insurance
loss predictions is not as important as the intensity, if it is clear that the hurricane makes landfall. In
the case of an official warning institution, it is however crucial to know, where the storm might pass,
meaning where to evacuate.

When the model output data is used only in qualitative way and no ”binary” threshold decision (evac-
uation yes or no) depends on it, it becomes difficult to measure the added value the model brings in a
cost-loss value based framework. The added value of knowledge gain is not easily measurable in economic
terms and might be quantified only if the company’s behaviour could be simulated in both, the case of
available and missing knowledge about the short-range development of a storm. Such a simulation seems
however difficult to put into practice. The knowledge gained from the tight collaboration with research
and operational centres also induces a longer term profit.
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Finally, like in all other cases of chain modelling of weather impacts, the uncertainty margin is high.
Uncertainties from the meteorological input, the loss modelling system and the estimation of observed
losses flow into the analysis.

7.3.2 Use of ECMWF Data for Insurance loss Predictions:
Recommendations for Swiss Re

The aim of the user-oriented assessment of the ECMWF model from the side of Swiss Re was to get a
better idea of the added value of an ensemble forecast, when compared to a deterministic forecast without
physically based information on spread.

The information contained in the ECMWF deterministic and ensemble forecast was shown in the storm
tracking part to be complementary to the NHC forecast, which is freely available on the web. The
ECMWF deterministic and ensemble track and intensity forecasts have more skill in the business rele-
vant forecast range of 3 days, than the NHC forecast, which is more skillful in the short-range.

In terms of statistical consistency the ECMWF TC EPS is overconfident. This means that the whole
physically possible range of developments is not covered and indicated by the forecast. This has to be
kept in mind, when using the data for real-time insurance loss predictions. A clear advantage of using an
ensemble forecasting system is the possibility of working in a probabilistic loss framework, which allows
for example the formulation of striking probabilities.

If the question of landfall is solved by the track forecast, meaning if landfall is certain, the pressure
information is more important for loss predictions than the track. Central pressure relates directly to
the potential losses. The track is relevant if the geographical value distribution is highly variable. The
central pressure forecast by ECMWF was found to be affected by a systematic error. As the intensity
information is crucial in a damage-oriented loss modelling approach, this bias should be corrected as
proposed in section 6.1.1.

Track and intensity give a simple but complete description of the storm that can be well used with sim-
plified assumptions on the storm size in order to perform insurance loss predictions. Based on recent
publications on the damage potential of TCs, the size of the storm is mentioned as an important factor,
missing for example in an intensity indication on the Saffir-Simpson scale (see review in the chapter on
Theories and Concepts, section 2.2). If an additional parameter is to be included, the radius of maximum
wind for example or the diameter of the storm would be a valuable information. The first one might be
preferable, because it contains an information on size and additionally allows a better wind field to be
deducted from the central pressure information.

Finally, it has to be emphasised that ECMWF is a reliable modelling partner for many European insti-
tutions and has a good reputation worldwide. Being data user is also a way of staying informed about
present modelling standards, problems and developments in this field.

7.4 Multiple-Perspective Approach to Verification

A multiple perspective view on the forecast verification problem can be very useful as illustrated in
this report by many examples. The storm tracking approach helped to point out a bias in pressure
forecasts, which could not have been unambiguously identified by conducting solely the user-oriented loss
prediction verification. Furthermore, the case study in the object-based assessment gave some hints of
possible explanations for the problems found in the storm tracking perspective. The setting up of the
object-based verification measure implied that relevant physical properties for the storm’s representation
on the ground and the induced damage had to be identified. This allowed to link the scientific side of
model verification to the user’s interests. Finally, the gain is not only on the side of the user, as it would
be in the case of a linear and one-way communication between the different assessment methods. A model
can also be improved in a more targeted way, if the different user needs and problems are included.
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Appendix A

A.1 Selected Hurricanes 2005-2008 for Traditional Forecast

Verification

Figure A.1: Selected hurricanes of the seasons 2005 to 2008 for the storm tracking verification of the ECMWF
TC EPS.
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Table A.1: Properties of selected hurricanes of the years 2005 to 2008 for the storm tracking verification of the
ECMWF TC EPS.

Hurricane Year SS Category Landfall

Emily 2005 5 1

Irene 2005 2 0

Katrina 2005 5 1

Maria 2005 3 0

Nate 2005 1 0

Ophelia 2005 1 0

Philippe 2005 1 0

Rita 2005 5 1

Stan 2005 1 1

Wilma 2005 5 1

Beta 2005 1 1

Ernesto 2006 1 1

Florence 2006 1 0

Gordon 2006 3 0

Helene 2006 3 0

Isaac 2006 1 0

Dean 2007 5 1

Felix 2007 5 1

Humberto 2007 1 1

Karen 2007 1 0

Noel 2007 1 1

Bertha 2008 3 0

Dolly 2008 2 1

Gustav 2008 4 1

Hanna 2008 1 1

Ike 2008 4 1

Kyle 2008 1 1

Omar 2008 3 1

Paloma 2008 4 1
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A.2 Errors and Biases in Track Components
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Figure A.2: Along and cross track position error for the selected hurricanes of the years 2005 to 2008.
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Figure A.3: Longitudinal and latitudinal track position error for the selected hurricanes of the years 2005 to
2008.
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Figure A.4: Bias in longitudinal and latitudinal track components for the selected hurricanes of the years 2005 to
2008. Positive bias in the longitudinal component means a bias to the East, positive bias in latitudinal component
means a bias to the North.
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A.3 Sensitivity Analysis Results for Forecast Errors

A.3.1 Sensitivity towards the Interpolation Method

The interpolation method plays a negligible role in the results obtained for the track and intensity
statistics. As an example, the direct position error and the central pressure errors are shown in figure
A.6 for hurricane Ike. In section 4.1.1 the interpolation technique for observations is introduced and the
advantages of the chosen method are described. The problem of irregularity in the observational time
grid becomes apparent in figure A.6 and A.5. The sample size for example decreases perfectly linearly
and smoothly with forecast lead time in the case of interpolated observations on the regular 12 h time
grid, whereas the sample size of interpolated forecasts includes jumps. These discontinuities lead to the
irregularities in the CPE curve shown in figure A.6. Except the latter effect no sign of dependence of the
results on the interpolation technique can be found in the case of hurricane Ike. The mean value for DPE

over all lead times amounts to 185±120 km in the case of interpolated observations and 165±107 km in the
case of the interpolated forecasts. The errors are thus slightly lower in the case of forecast interpolation.
This is partly due to the fact that different lead times are used, as the time grid is shifted by 3 hours.
With the data available this implies that the last lead time in the interpolation of forecasts is 4 days and 6
h and not 5 days as when the raw forecasts are used with interpolated observations. For CPE the average
values are 31 ± 17 hPa for the interpolated observations and 31 ± 18 hPa for the interpolated forecasts.
The errors in the case of central pressure are exactly the same as there is no lead time dependency.
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Figure A.5: Sample size dependence on interpolation method for hurricane Ike (2008). The lead times for the
two curves were shifted by 0.5 units in order to allow a comparison to be made.
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Figure A.6: Error in direct position (left) and central pressure (right), sensitivity towards interpolation method
for hurricane Ike (2008). The lead times for the two curves were shifted by 0.5 units in order to allow a comparison
to be made.
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A.3.2 Sensitivity towards Hurricane Intensity and Landfalling

The hurricane groups defined on the basis of their intensity and whether the TC hits land or not show
slightly differing results for the position and intensity errors. Interestingly, in the case of track errors,
ECMWF and NHC official errors show the same pattern, while the tendency in the case of CLIPER is dif-
ferent (see figures A.7 and A.8). The position error of strong landfalling hurricanes (orange) in CLIPER
increases more strongly with augmenting forecast range than in the other groups, beginning with the
lowest error for short lead times and reaching the highest error for longer lead times. NHC indicates
highest track errors and uncertainty for the original hurricane group including all selected hurricanes.
ECMWF shows slightly lower track errors for the strong landfalling hurricane and as in the case of NHC
is affected by highest errors, when considering all hurricanes. The differences though are small and can
probably mostly be attributed to the sample size difference. An other reason for the higher errors in the
”all hurricanes” group in the ECMWF and NHC forecasts may be given by the Category 1-2 hurricanes,
which stay over the ocean. The data scarcity over the free ocean make the analysis fields more uncertain
than near the coasts, where terrestrial systems can be included for bias correction of remote sensing
observations.

The partition between along and cross track errors is similar for all groups (see figure A.7). For long
forecast times the influence of the propagation speed in the total error is of around 65%. Differences
in partitioning of around 15% can be found at lead time 24 h. The strong landfalling hurricanes seem
to be affected by a higher influence of the along track component in its position error. In combination
with the higher intensity error (see figures A.9 and A.10), this can be seen as an indication that the
propagation speed might be affected by small scale, microphysical and vortex dynamical elements, than
the propagation direction.

All models exhibit a clear tendency of producing higher intensity errors for strong landfalling hurricanes
(see figures A.9 and A.10). As already said in the Case Study chapter, section 4.2, this may also be
influenced by the fact that the proportion of 2005 hurricanes in this group is slightly higher than in
other groups. For the track error taking all hurricanes into account yields the highest errors. For the
intensity errors, on the contrary, grouping hurricanes after the intensity and landfalling characteristics
produces higher errors. Apparently the hurricanes staying over the ocean without making landfall are
better forecast in terms of their intensity. Indeed the changes induced by passages over land are difficult
to capture well in the model, because the magnitude of the weakening has to do with small scale inner
core dynamics (Lohmann, 2009).

Some of the statements on the sensitivity towards hurricane intensity and landfalling characteristics
can be verified in the section on the sensitivity towards location over land or sea in the results part,
section 6.1.5. The latter analysis however considers forecast position as a classifying property and not
the characteristics of the whole TC track, like in this section.
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Figure A.7: Positional errors for different hurricane groups. Left: Comparison of the ECMWF ensemble mean
positional error and standard deviation for different hurricane groups. Right: Sensitivity of average importance
of the along track error in the direct position error of the ECMWF EPS model for different hurricane groups.
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Figure A.8: Comparison of CLIPER5 (left) and NHC official forecast (right) mean error and standard deviation
for the different hurricane groups.
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Figure A.9: Comparison of the ECMWF ensemble mean central pressure error and standard deviation for
different hurricane groups.
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Figure A.10: Comparison of CLIPER5 (left) and NHC official forecast (right) mean error and standard devia-
tion for the different hurricane groups.
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A.4 Correlation Analysis for Central Pressure Error

Further investigations on the central pressure bias were conducted in order to find the best possible cor-
rection for applications like insurance loss predictions. In figure A.11 the CPE is shown as a function of
observed and forecast pressure. Figure A.12 shows CPE as a function of observed and forecast central
pressure change in 12 h. The vertical lines in figure A.11 (a) and (b) as well as in figure A.12 (a) and (b)
come from the fact that for 1 observed pressure there are always 52 forecasts and thus forecast errors.
The parallel lines in the corresponding graphs below ((c) and (d) of the same figures) relating forecast
pressure and pressure changes in 12 h to CPE are induced by the tendency of 1 ensemble forecast to
produce pressure values spread around a certain median forecast value. The distance from the observed
forecast is then always similar taking into account the latter spread.

Only one good correspondence was found, namely between the observed pressure and the CPE. Corre-
lations of 0.86 for the analysis down to 0.77 for 120 h lead time can be found. The lower the observed
pressure, the higher the CPE for all lead times. Ideally, the CPE should be decoupled from the observed
pressure (no systematic error) and the intensity error low (no random error). High correlation, however
indicates that the errors can be explained, for examples by the suppositions made in section 6.1.1. Thus,
the correlation between observed pressure and CPE is interesting in terms of understanding the high
pressure bias, but does not help in the application of a case dependent, targeted bias correction.

No dependency, however is found between CPE and observed pressure change (see figure A.12). This
means the hypothesised inability of the model to capture rapid strengthening and weakening (see section
6.1.4), its inertia is clearly not a function of the specific situation (observed pressure change). Correla-
tions of maximum 0.23 were found for the analysis time, reaching approximately 0 for 120 h lead time.

There is generally only low correlation between the forecast central pressure change or central pressure
change and CPE. Such a dependence would have been useful for a case specific bias correction. The
correlation between forecast central pressure and CPE is 0 for the analysis time and decreases to -0.56
for lead time 120 h. For longer forecast ranges, CPE shows a weak correlation with central pressure, but
probably not strong enough to deduce a forecast pressure change dependent bias correction.

For the analysis time, the correlation of forecast central pressure change with CPE is strong (-0.97). The
detail is shown in figure A.4. The forecast pressure change in the analysis case is the difference between
the last observation and the present analysed pressure. Strong forecast pressure changes are linked to high
CPE. The high dependency comes from the fact that the change is measured from the last observation,
which is clearly also expected to correlate well with the present observation. No correlation, however is
found between the analysis and the future CPE in the forecasts. Thus this dependency is of no use for
a targeted pressure bias correction either.
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(a) CPE vs observed p (• OPER, • ENS, • Ike) (b) CPE vs observed p (lead times)

(c) CPE vs forecast p (• OPER, • ENS, • Ike) (d) CPE vs forecast p (lead times)

Figure A.11: CPE dependence on forecast and observed pressure. Green: ECMWF operational forecast, Blue:
ECMWF ensemble forecast, Black in the plots on the left: hurricane Ike in 2008.
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(a) CPE vs observed ∆p (• OPER, • ENS, • Ike) (b) CPE vs observed ∆p (lead times)

(c) CPE vs forecast ∆p (• OPER, • ENS, • Ike) (d) CPE vs forecast ∆p (lead times)

Figure A.12: CPE dependence on forecast and observed pressure change. The change in pressure is measured
between the present and the previous time step. Green: ECMWF operational forecast, Blue: ECMWF ensemble
forecast, Black in the plots on the left: hurricane Ike in 2008.
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Figure A.13: Dependence of initial central pressure error on pressure change between the previous and the
present observation.
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A.5 Object-Based Verification for Hurricane Ike
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Figure A.14: Difference in position of the minimum central pressure between the ECMWF analysis field and
NHC best track data. Left: Distance between NHC best track position and ECMWF analysis. Right: Azimuthal
error between NHC best track position and ECMWF analysis.
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Figure A.15: Central Pressure difference between NHC best track data and ECMWF analysis.
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Figure A.16: Position and central pressure difference between NHC best track data and ECMWF analysis and
forecasts. Left: Distance between NHC best track position and ECMWF analysis as well as +24 h, +72 h and
+120 h lead time forecasts. Right: Central Pressure difference between NHC best track data and ECMWF analysis
as well as +24 h, +72 h and +120 h lead time forecasts.
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A.6 Meteorological Forecast Maps of Selected Case Studies for
Insurance Loss Predictions
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Figure A.17: ECMWF ensemble track and central pressure (CP) in hPa forecasts for hurricane Ike for the
indicated dates and times. On the left the original, biased pressure maps, on the right, the bias corrected pressure
maps. — Past observations, * Analysed position, −−− Future observations, — Operational forecast, — Control
forecast, — Ensemble median, −−− Ensemble quartiles.
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(f) Hurricane Katrina, 2005/09/28 12:00 UTC, -23h

Figure A.18: ECMWF ensemble track and central pressure (CP) in hPa forecasts for hurricane Katrina for the
indicated dates and times. On the left the original, biased pressure maps, on the right, the bias corrected pressure
maps. Lead times correspond to the landfall in New Orleans. — Past observations, * Analysed position, − − −

Future observations, — Operational forecast, — Control forecast, — Ensemble median, −−− Ensemble quartiles.
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(d) Hurricane Gustav, 2008/08/31 12:00 UTC, -24h

Figure A.19: ECMWF ensemble track and central pressure (CP) in hPa forecasts for hurricane Gustav for the
indicated dates and times. On the left the original, biased pressure maps, on the right, the bias corrected pressure
maps. — Past observations, * Analysed position, −−− Future observations, — Operational forecast, — Control
forecast, — Ensemble median, −−− Ensemble quartiles.
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(d) Hurricane Wilma, 2005/10/23 12:00 UTC, -23h

Figure A.20: ECMWF ensemble track and central pressure (CP) in hPa forecasts for hurricane Wilma for the
indicated dates and times. On the left the original, biased pressure maps, on the right, the bias corrected pressure
maps. Lead times corresponds to the landfall in Florida. — Past observations, * Analysed position, −−− Future
observations, — Operational forecast, — Control forecast, — Ensemble median, −−− Ensemble quartiles.
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(d) Hurricane Rita, 2005/09/22 12:00 UTC, -44h

Figure A.21: ECMWF ensemble track and central pressure (CP) in hPa forecasts for hurricane Rita for the
indicated dates and times. On the left the original, biased pressure maps, on the right, the bias corrected pressure
maps. — Past observations, * Analysed position, −−− Future observations, — Operational forecast, — Control
forecast, — Ensemble median, −−− Ensemble quartiles.
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(a) Hurricane Ike, 2008/09/10 00:00 UTC, -79h
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(b) Hurricane Ike, 2008/09/12 12:00 UTC, -31h
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(d) Hurricane Katrina, 2005/08/26 12:00 UTC, -71h
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(e) Hurricane Katrina, 2005/08/28 12:00 UTC, -23h

Figure A.22: ECMWF ensemble track forecasts for hurricane Ike and Katrina for the indicated dates and times.
The number of ensemble members passing through a specific grid point is shown. The lead times before landfall for
Hurricane Katrina correspond to the landfall in New Orleans. — Past observations, * Analysed position, −− −

Future observations, — Operational forecast, — Control forecast, — Ensemble median, −−− Ensemble quartiles.
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(a) Hurricane Gustav, 2008/08/29 12:00 UTC, 72h
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(b) Hurricane Gustav, 2008/08/31 12:00 UTC, -24h
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(c) Hurricane Wilma, 2005/10/21 00:00 UTC, -83h
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(d) Hurricane Wilma, 2005/10/23 12:00 UTC, -23h
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(e) Hurricane Rita, 2005/09/21 12:00 UTC, -68h
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(f) Hurricane Rita, 2005/09/22 12:00 UTC, -44h

Figure A.23: ECMWF ensemble track forecasts for hurricane Gustav, Wilma and Rita for the indicated dates
and times. The number of ensemble members passing trough a specific grid point is shown. For Hurricane Wilma
the lead times corresponds to the landfall in Florida. — Past observations, * Analysed position, − − − Future
observations, — Operational forecast, — Control forecast, — Ensemble median, −−− Ensemble quartiles.
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A.7 Insurance Loss Predictions for Selected Case Studies

Figure A.24: Observed losses and wind footprint for hurricane Katrina: US Market Portfolio from the
18.06.2008. Importance of losses are indicated by the diameter of the red circles. The colorbar indicates wind
speeds in m/s

78



A.7. INSURANCE LOSS PREDICTIONS FOR SELECTED CASE STUDIES APPENDIX A. APPENDIX

Biased Corrected

0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

Scenario loss relative to observed loss

P
ro

ba
bi

lit
y,

 p
er

ce
nt

 o
f e

ve
nt

s

 

 

OPER
CTL
ENS MEAN
NHC
OBS

(a) Hurricane Ike, 2008/09/10 00:00 UTC, -79h
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(b) Hurricane Ike, 2008/09/10 00:00 UTC, -79h
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(c) Hurricane Ike, 2008/09/12 00:00 UTC, -31h
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(d) Hurricane Ike, 2008/09/12 00:00 UTC, -31h

Figure A.25: Loss predictions for hurricane Ike for the indicated forecast date and time. On the left, the
original, biased loss predictions. On the right, the bias corrected loss predictions. The absolute losses are in the
order of magnitude of 10 billion US Dollars.
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(c) Hurricane Katrina, 2005/08/26 12:00 UTC, -71h
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(d) Hurricane Katrina, 2005/08/26 12:00 UTC, -71h
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(e) Hurricane Katrina, 2005/08/28 12:00 UTC, -23h
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(f) Hurricane Katrina, 2005/08/28 12:00 UTC, -23h

Figure A.26: Loss predictions for hurricane Katrina for the indicated forecast date and time. On the left, the
original, biased loss predictions. On the right, the bias corrected loss predictions. The absolute losses are in the
order of magnitude of 10 billion US Dollars. Lead times correspond to the landfall in New Orleans.
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(a) Hurricane Gustav, 2008/08/29 12:00 UTC, -72h
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(b) Hurricane Gustav, 2008/08/29 12:00 UTC, -72h
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(c) Hurricane Gustav, 2008/08/31 12:00 UTC, -24h
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(d) Hurricane Gustav, 2008/08/31 12:00 UTC, -24h

Figure A.27: Loss predictions for hurricane Gustav for the indicated forecast date and time. On the left, the
original, biased loss predictions. On the right, the bias corrected loss predictions. The absolute losses are in the
order of magnitude of 10 billion US Dollars.

81



APPENDIX A. APPENDIX A.7. INSURANCE LOSS PREDICTIONS FOR SELECTED CASE STUDIES

Biased Corrected

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70

80

Scenario loss relative to observed loss

P
ro

ba
bi

lit
y,

 p
er

ce
nt

 o
f e

ve
nt

s

 

 

OPER
CTL
ENS MEAN
NHC
OBS

(a) Hurricane Wilma, 2005/10/21 00:00 UTC, -83h
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(b) Hurricane Wilma, 2005/10/21 00:00 UTC, -83h
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(c) Hurricane Wilma, 2005/10/23 12:00 UTC, -23h
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(d) Hurricane Wilma, 2005/10/23 12:00 UTC, -23h

Figure A.28: Loss predictions for hurricane Wilma for the indicated forecast date and time. The lead times
correspond to the landfall in Florida. On the left, the original, biased loss predictions. On the right, the bias
corrected loss predictions. The absolute losses are in the order of magnitude of 10 billion US Dollars.
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(a) Hurricane Rita, 2005/09/21 12:00 UTC, -68h
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(b) Hurricane Rita, 2005/09/21 12:00 UTC, -68h
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(c) Hurricane Rita, 2005/09/22 12:00 UTC, -44h
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(d) Hurricane Rita, 2005/09/22 12:00 UTC, -44h

Figure A.29: Loss predictions for hurricane Rita for the indicated forecast date and time. On the left, the
original, biased loss predictions. On the right, the bias corrected loss predictions. The absolute losses are in the
order of magnitude of 10 billion US Dollars.
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