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Observational evidence for soil-moisture impact
on hot extremes in southeastern Europe
Martin Hirschi1,2*, Sonia I. Seneviratne1*, Vesselin Alexandrov3, Fredrik Boberg4,
Constanta Boroneant5, Ole B. Christensen4, Herbert Formayer6, Boris Orlowsky1 and Petr Stepanek7

Climate change is expected to affect not only the means of
climatic variables, but also their variabilities1,2 and extremes
such as heat waves2–6. In particular, modelling studies have
postulated a possible impact of soil-moisture deficit and
drought on hot extremes7–11. Such effects could be responsible
for impending changes in the occurrence of heat waves
in Europe7. Here we analyse observational indices based
on measurements at 275 meteorological stations in central
and southeastern Europe, and on publicly available gridded
observations12. We find a relationship between soil-moisture
deficit, as expressed by the standardized precipitation index13,
and summer hot extremes in southeastern Europe. This
relationship is stronger for the high end of the distribution
of temperature extremes. We compare our results with
simulations of current climate models and find that the models
correctly represent the soil-moisture impacts on temperature
extremes in southeastern Europe, but overestimate them
in central Europe. Given the memory associated with soil
moisture storage, our findings may help with climate-change-
adaptation measures, such as early-warning and prediction
tools for extreme heat waves.

A preferential warming of the hot tail of temperature distri-
butions as a consequence of climate change has been reported in
observational studies for the European continent, where changes in
the upper and lower tails of daily minimum, maximum and mean
temperature distributions have been analysed14–16. Strong trends
in heat-wave intensity, length and number have in particular been
identified in the eastern Mediterranean region17. In the context of
modelling studies, soil moisture has been shown to possibly play an
important role for the occurrence of hot extremes in Europe7,10,11
and impending changes thereof with climate change7,8,18.

Using quantile regression19,20 (see Methods), we investigate
whether such a relation between dry conditions and hot extremes
can indeed be established from observations in Europe based on
a newly available observational database. Quantile regression was
developed as an extension to the ordinary least squares regression
to estimate the response not only in the mean of a variable, but
in all parts of its data distribution. It has been widely used in
econometrics19,20, and in some ecological studies21. Recently, the
method has been applied for the identification of trends in the
Baltic sea level22.

For the analysis, we use the standardized precipitation index
(SPI; ref. 13, see Methods), a commonly used drought index23,24,
and two temperature indices from the CECILIA climate and
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Figure 1 | Station observations and analysis domains. Location of
high-density station observations from the CECILIA climate and extreme
database (responsible institutions: University of Natural Resources and Life
Sciences (BOKU), Austria; Czech Hydrometeorological Institute (CHMI),
Czech Republic; National Institute of Meteorology and Hydrology (NIMH),
Bulgaria; National Meteorological Administration (NMA), Romania), as
well as analysed central and southeast European domains (boxes).

extreme database (see Methods): the percentage of hot days
(%HD) and the maximum heat-wave duration (HWDmax). This
database was developed in the framework of the EU-FP6 project
CECILIA and provides indices computed from two observational
sources: (1) the gridded E-Obs dataset12 and (2) high-density
station data from the participating institutions (Fig. 1). The
latter set of indices represents an invaluable new observational
reference for the investigation of extreme events in central and
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Figure 2 |Hot extremes versus SPI. a–d, Scatter plots of monthly JJA %HD (a,b) and HWDmax (c,d) versus SPI from the high-density station observations
(a,c) and from the gridded E-Obs dataset (b,d), based on domain-averaged values for the southeast European domain (1961–2000 period). Also shown
are histograms of the probability density for wet and dry conditions respectively, as well as the regression lines for a selection of distinct quantiles (that
is, median, 0.1, 0.3, 0.7, 0.9). For 95% confidence intervals of the slopes of the quantile regression lines, see Fig. 3.

eastern Europe. Moreover, computed indices from reanalysis-
driven regional climate model simulations (see Methods) are also
included in the analysis.

The central and east European CECILIA target region is
divided into two domains for the analyses (see Fig. 1): a southeast
European domain (21◦–30◦ E, 41◦–48◦N) situated in a transitional
soil-moisture regime25 (soil-moisture-limited evapotranspiration
regime)26, and a central European domain (10◦–19◦ E, 46◦–51◦N)
with wet soil-moisture regime (energy-limited evapotranspiration
regime)26. It is thus expected that the effect of soil moisture on
hot extremes is stronger for the former of the two domains7,27
(see Methods for details). The station- and grid-point-based
temperature indices and SPI are averaged respectively over these
domains for the analyses (see Methods).

Figure 2a–d shows scatter plots of monthly June–July–August
(JJA) data of %HD and HWDmax versus SPI from the high-density
station observations and from the gridded E-Obs dataset averaged
over the southeast European domain (1961–2000 period, n= 120).
In these panels, histograms of the probability density are shown for
wet and dry conditions respectively, together with the regression
lines for a selection of distinct quantiles (that is, median, 0.1, 0.3,
0.7, 0.9; see Methods for the derivation of the slope and intercept
parameters βτ and γτ of the quantile regressions). This analysis

reveals a widening of the%HDandHWDmax data distributionswith
drier conditions. This is also apparent in the gradually increasing
negative slopes of the quantile regression lines towards higher%HD
and HWDmax quantiles. Hence, we indeed find an intensification
of hot extremes with drier surface conditions in the domain with
transitional climate and soil-moisture regime. The corresponding
scatter plots with data points coloured according to different
ten-year time periods can be found in Supplementary Figs S1 and
S2 for both domains.

To investigate this relationship further and to identify how
different temperature indices are affected bymoisture availability as
a function of the soil-moisture regime, we show in Fig. 3 respective
quantile regression slopes for the two mentioned temperature
indices in the southeast versus central European domains. These
analyses are shown for the two sets of observational indices
(based on station data and the gridded product) as well as for
the considered reanalysis-driven regional climate simulations. For
the observations, the 95% confidence intervals of the estimated
slopes are also shown as shading. These have been derived using a
pairwise block bootstrap (with non-overlapping blocks consisting
of the three consecutive summer months of each year so as
to take into account the intra-annual autocorrelation of the
data). Significant slopes (5% significance level, two-tailed test) are
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Figure 3 |Quantile regression analysis. Quantile regression slopes of the 0.1–0.9 quantiles of monthly JJA %HD and HWDmax in relation to SPI for the two
observational datasets and for the reanalysis-driven regional climate model simulations (1961–2000 period, southeast (a,c) and central (b,d) European
domains). The 95% confidence intervals of the estimated slopes are shown as shadings for the observational datasets, with significant slopes denoted with
a bold dot (5% significance level, two-tailed test). For the model simulations, the ensemble median slopes are shown, and dots are shown as bold when at
least 75% of the simulations present significant slopes.

highlighted with bold dots. In the case of the regional climate
model simulations, the ensemble median slopes are shown, and
dots are shown as bold when at least 75% of the individual models
present significant slopes.

Figure 3a,c shows the respective quantile regression slopes of
the 0.1–0.9 quantiles of %HD and HWDmax in relation to SPI
in the southeast European domain, that is, corresponding to the
analysis of Fig. 2. As in Fig. 2, gradually increasing negative slopes
for increasing %HD and HWDmax quantiles are identified from
the observational datasets. The strong relation of upper quantiles
of %HD and HWDmax with SPI is found to be a robust feature
on both monthly (Figs 2 and 3) and seasonal (Supplementary
Fig. S3a,c) timescales, as well as for different tested time periods
(Supplementary Fig. S4). The inferred slopes are similar for the
high-density station observations and the gridded dataset, but
slightlymore pronounced and significant for the former.

By contrast, only a weak relationship between SPI and the
analysed temperature indices is identified in the central European
domain (Fig. 3b,d), which is generally insignificant on the seasonal
timescale (Supplementary Fig. S3b,d). In that domain, the relations
of the quantiles of %HD and HWDmax with SPI also do not
present a clear tendency with increasing quantiles. Thus, the soil-
moisture regime indeed seems critical in explaining the identified
relationship between SPI and the temperature extremes in the two
investigated regions, consistentwith theoretical considerations27.

This is further illustrated in Table 1, which lists the median
and 90th percentile %HD and HWDmax values as a function of
SPI for the two domains (based on the regressions shown in
Fig. 2 and the Supplementary Fig. S1 for the high-density station
observations). A stronger relationship of the extreme quantiles
of %HD and HWDmax with SPI in the southeast versus central

European domain is again clear from this summary. Distinct
relationships for median and 90th percentile values in the southeast
European domain are also confirmed. In southeast Europe, the
percentage of hot days increases from 4.5% to 43% for the 90th
percentile values, respectively from 1% to 19% for median values,
in the case of (moderate-to-severe) drought versus wet conditions.
The maximum heat-wave duration is also significantly impacted,
with an increase from 1.2 to 6.9 days for the 90th percentile
values, respectively from 0 to 3.3 days for the median values. For
the central European domain, only weak tendencies are found
between dry versus wet summers, and in particular no clear
discrepancies are found for the relationship of extreme quantiles
versus median values with SPI.

Do current climate models correctly represent the impact of
drought conditions on hot extremes in central and eastern Europe?
On the basis of the analyses in Fig. 3 and Supplementary Fig. S3,
the investigated ERA-40-driven regional climate model simulations
from the European ENSEMBLES project seem to capture the
identified relationship in the southeast European domain, but
overestimate the impact of moisture deficit in the central European
domain, in particular on the seasonal timescale. Thus, while they
are able to represent the respective relationships to some extent,
the geographical delimitation of the soil-moisture regimes (and
respective evapotranspiration regimes) does not seem to be fully
correct for the present climate, at least for the models’ mean
behaviour. Hence, it is possible that currently available regional
climate projections do not correctly estimate the projected risk of
heat-wave occurrence in central Europe.

Another relevant question is the extent to which recent trends
in drought occurrence may have impacted reported trends in the
occurrence of hot extremes. Supplementary Fig. S5 shows the
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Table 1 | Median and 90th percentile %HD and HWDmax values (including their 95% confidence intervals) as a function of SPI for
the two domains.

High-density station observations %HD (%) HWDmax (days)

Median 90th percentile Median 90th percentile

Southeast European domain SPI=−1.5 (moderate-to-severe drought) 19 43 3.3 6.9
[11, 26] [29, 57] [1.5, 5.0] [3.5, 10.3]

SPI=−1 (mild-to-moderate drought) 16 37 2.7 6.0
[10, 22] [25, 48] [1.4, 4.0] [3.4, 8.5]

SPI=0 (normal conditions) 10 24 1.6 4.1
[7, 13] [17, 31] [1.0, 2.3] [2.8, 5.3]

SPI= 1 (mildly-to-moderately wet) 4 11 0.5 2.2
[1, 7] [9, 13] [−0.3,1.3] [0.4, 3.9]

SPI= 1.5 (moderately-to-severely wet) 1 4.5 0 1.2
[−4,5] [4, 5] [−1.2,1.1] [−1.3,3.7]

Central European domain SPI=−1.5 (moderate-to-severe drought) 16 28 3.0 4.5
[7, 24] [−1,57] [1.1, 4.8] [0.7, 8.3]

SPI=−1 (mild-to-moderate drought) 14 26 2.5 4.3
[7, 20] [3, 48] [1.1, 3.9] [1.4, 7.2]

SPI=0 (normal conditions) 10 21 1.6 3.8
[7, 14] [9, 33] [0.9, 2.4] [2.3, 5.3]

SPI= 1 (mildly-to-moderately wet) 7 16 0.7 3.4
[4, 10] [4, 29] [−0.3,1.7] [1.3, 5.5]

SPI= 1.5 (moderately-to-severely wet) 5 14 0.3 3.1
[1, 9] [−3,31] [−1.1,1.7] [0.2, 6.0]

The values are based on the regressions shown in Fig. 2 and the Supplementary Fig. S1 for the high-density station observations.

temporal evolution of seasonal (JJA) mean%HD, HWDmax and SPI
(that is, n= 40) for the station observations and E-Obs in southeast
Europe. The applied non-parametric Wilcoxon–Mann–Whitney
(test for a shift in location between 1961–1980 and 1981–2000)
and Mann–Kendall (test for monotonic trends, applied after 1970)
tests indicate a significant increase, respectively decrease, of the hot
extremes and SPI over the investigated time period (5% significance
levels, two-tailed tests, with corresponding p values in the panels).
Together with the observed relation of the temperature extremes
with SPI identified in Figs 2 and 3, this suggests that part of
the observed trend in the hot extremes could have resulted from
trends in moisture availability. We can infer from the station
observations that this result is not the fortuitous consequence
of parallel trends in SPI and temperatures, because a significant
relation between the two investigated temperature indices and SPI is
also found for temporally de-trended data (Supplementary Fig. S6).
In the case of the gridded dataset a widening of the confidence
bands is seen, which may be due to the lower density of the
underlying observational basis.

This observational study partly supports previous modelling
results suggesting an amplification of temperature extremes by
soil-moisture state in Europe in the context of global warming and
linkedwith geographical characteristics of soil-moisture regimes7,27.
This amplification is found to be most pronounced for the hot
tails of the temperature extremes’ distributions. Climate models
are found to overestimate this relationship in central Europe, while
they agree well with observations in southeast Europe. This has
important implications formodel-based analyses and projections of
hot extremes in Europe and other regions2,3,5–10.

As climate change is expected to further enhance summer drying
in Europe7, the observed relationship between SPI and hot extremes
implies a further amplification of the latter in coming decades.
For the correct representation of these changes, models will need
to be constrained by observations to better capture regions of
soil-moisture impacts on hot extremes. This is also relevant for
adaptationmeasures, in particular for the successful development of

early warning and prediction tools for these extremes28. Indeed, the
importance of soil moisture for hot extremes implies an enhanced
predictability of such extremes, given the persistence associated
with soil-moisture storage.

Methods
Quantile regression. In classical linear regression, the conditional mean of
a response random variable Y is modelled as linearly related to a random
variable X , that is,

E[Y |X ] =βX+γ = f(β,γ )(X)

with β denoting the slope and γ the intercept. The parameters β and γ are
estimated by minimizing the sum of the squared residuals for a realization
(x,y) of (X ,Y )

(β,γ )= argmin
(β′,γ ′)

∑
i

(yi− f(β′,γ ′)(xi))2

In the case of quantile regression19,20, E[Y |X ] is replaced by a quantile of the
response variable Y conditional on X , Qτ [Y |X ]. For each quantile τ ∈ [0,1], the
linear quantile regression can be written as

Qτ [Y |X ] = f(βτ ,γτ )(X)

and for a realization (x,y) the slope βτ and intercept γτ parameters are obtained by
minimizing the sumof the asymmetrically weighted absolute residuals

(βτ ,γτ )= argmin
(βτ ′,γτ ′)

∑
i

ρτ (yi− f(βτ ′,γτ ′)(xi))

ρτ denotes the tilted absolute value function, which gives differing weights
to positive and negative residuals ri depending on the quantile under
consideration20, that is,

ρτ (ri)=
{
τ ri if ri ≥ 0
(τ−1)ri if ri< 0

Unlike classical ordinary least-squares regression, quantile regression is not
based on parametric assumptions regarding specificities of the underlying data
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distribution and is flexible for modelling data with heterogeneous conditional
distributions (for example, non-constant variance of the data). Here, we assume a
linear model for the conditional quantiles.

CECILIA indices. To explore the relation of temperature extremes with
soil-moisture deficit, we use here two temperature indices from the CECILIA
climate and extreme database (see http://cecilia.dmi.dk/), %HD andHWDmax (both
computed on a monthly basis). The percentage of hot days (%HD) is defined as the
percentage of days with daily maximum temperature Tmax > 90th reference-period
(1961–1990) percentile, and the maximum heat-wave duration (HWDmax) is
defined as the 90th-percentile-based maximum heat-wave duration (that is,
the maximum number of consecutive days with Tmax > 90th reference-period
percentile). The database entails indices computed from observations (high-density
station observations from Fig. 1 and E-Obs (ref. 12); indices available for the
1961–2000 period) and from model data of the EU-projects PRUDENCE,
ENSEMBLES (transient and ERA-40-driven runs) and CECILIA. As the focus of
the present investigation is on observed patterns, only the ENSEMBLES reanalysis
(ERA-40) driven simulations are included in the analysis. However, similar results
are found for the other sets of regional climate simulations (not shown). Note
that E-Obs and the high-density local observations are not fully independent, but
the latter include a larger number of stations (∼80 versus 275 stations in the four
countries analysed) and are thus better able to represent local effects.

SPI. The SPI (refs 13,24) is applied here as a measure of soil-moisture deficit
(negative values indicate drought, positive values indicate wet conditions). The
SPI is a widely used drought index and quantifies the precipitation deficit in
relation to the long-term probability distribution at a location (that is, the
two-parameter Gamma distribution is used here). It can be derived for various
timescales. In this analysis the six previous months are considered, which addresses
meteorological drought and, indirectly, also agricultural drought to a large extent.
The SPI is calculated for each station or grid point individually (depending on
the data source), and then domain-averaged for the analyses. Values of −0.5 to
−1 correspond to mild droughts, −1 to −1.5 to moderate droughts, −1.5 to −2
to severe droughts and below −2 to extreme droughts. Similarly, values from 0
to 2 correspond to mildly wet to severely wet conditions, and values above 2 to
extremely wet conditions.

Spatial aggregation of the station data. The analyses of the article are based on
averages of the station data within the respective domains. The results are found
to be robust both on the station basis and with other aggregation approaches (see
Supplementary Methods).

Soil-moisture regimes of analysed domains. For soil-moisture deficit to
impact the surface-energy balance, and hence air temperature, in a given
region, evapotranspiration needs to be soil moisture limited7,27. This is the
case in transitional regions between dry and wet climates25,27. An analysis
on the basis of flux measurements29 and observation-driven multimodel
estimates30 has demonstrated the presence of a gradient of soil-moisture regimes
(and respective evapotranspiration regimes) on the European continent26.
Following this analysis, the southeast European domain analysed in this study
is characterized by a transitional soil-moisture regime (soil-moisture-limited
evapotranspiration regime), whereas the central European domain is characterized
by awet soil-moisture regime (energy-limited evapotranspiration regime).
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