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[1] This paper compares six statistical downscaling models (SDMs) and three regional
climate models (RCMs) in their ability to downscale daily precipitation statistics in a
region of complex topography. The six SDMs include regression methods, weather typing
methods, a conditional weather generator, and a bias correction and spatial disaggregation
approach. The comparison is carried out over the European Alps for current and future
(2071–2100) climate. The evaluation of simulated precipitation for the current climate
shows that the SDMs and RCMs tend to have similar biases but that they differ with
respect to interannual variations. The SDMs strongly underestimate the magnitude of the
year-to-year variations. Clear differences emerge also with respect to the year-to-year
anomaly correlation skill: In winter, over complex terrain, the better RCMs achieve
significantly higher skills than the SDMs. Over flat terrain and in summer, the differences
are smaller. Scenario results using A2 emissions show that in winter mean
precipitation tends to increase north of about 45�N and insignificant or opposite changes
are found to the south. There is good agreement between the downscaling models for
most precipitation statistics. In summer, there is still good qualitative agreement between
the RCMs but large differences between the SDMs and between the SDMs and the
RCMs. According to the RCMs, there is a strong trend toward drier conditions
including longer periods of drought. The SDMs, on the other hand, show mostly
nonsignificant or even opposite changes. Overall, the present analysis suggests that
downscaling does significantly contribute to the uncertainty in regional climate scenarios,
especially for the summer precipitation climate.
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1. Introduction

[2] Precipitation is a key component of the hydrological
cycle and one of the most important parameters for a range
of natural and socioeconomic systems: water resources
management, agriculture and forestry, tourism, flood pro-
tection, to name just a few. The study of consequences of
global climate change on these systems requires scenarios
of future precipitation change as input to climate impact
models. Direct application of output from General Circula-

tion Models (GCMs) is often inadequate because of the
limited representation of mesoscale atmospheric processes,
topography, and land-sea distribution in GCMs [e.g.,
Cohen, 1990; von Storch et al., 1993]. Moreover, and of
particular concern with precipitation, GCMs exhibit a much
larger spatial scale (grid point area) than is usually needed in
impact studies and this leads to inconsistencies in frequency
statistics, such as the exceedance of a threshold for heavy
precipitation [e.g., Osborn and Hulme, 1997; Mearns et al.,
1997].
[3] Techniques have been developed to downscale infor-

mation from GCMs to regional scales. These can be
categorized into two approaches: ‘‘Dynamical downscal-
ing’’ uses regional climate models (RCMs) to simulate
finer-scale physical processes consistent with the large-scale
weather evolution prescribed from a GCM [cf. Giorgi et al.,
2001; Mearns et al., 2003]. ‘‘Statistical downscaling,’’ on
the other hand, adopts statistical relationships between the
regional climate and carefully selected large-scale parame-
ters [cf. von Storch et al., 1993; Wilby et al., 2004; Goodess
et al., 2007]. These relationships are empirical (i.e., cali-
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brated from observations) and they are applied using the
predictor fields from GCMs in order to construct scenarios.
[4] There are a number of application related criteria that

contribute to an appropriate choice of downscaling method
in a particular context [cf. Mearns et al., 2003; Wilby et al.,
2004]. However, there are assumptions involved in both
techniques [see also Giorgi et al., 2001] which are difficult
to verify a priori and contribute to the uncertainty of results.
Rather than developing a downscaling scheme for a partic-
ular application, the purpose of the present study is to
examine uncertainty of downscaling, by comparing several
different downscaling models from both approaches.
[5] Several previous studies have compared dynamical

and statistical downscaling methods. For example, Kidson
and Thompson [1998] considered a regression-based statis-
tical model and a RCM integration for present-day climate
and found that both methods gave similar levels of skill in
the representation of observed temperature and precipitation
anomalies for stations in New Zealand. Similarly for sta-
tions in Europe, Murphy [1999] finds that a regression
model for monthly temperature and precipitation anomalies
has a comparable performance to a RCM, but scenarios
developed from these methods differed substantially
[Murphy, 2000]. Similarly, large differences were found in
precipitation scenarios between a RCM and a weather
typing technique over eastern Nebraska [Mearns et al.,
1999] and between a RCM and a multivariate regression
model in Scandinavia [Hellström et al., 2001]. Using a
RCM climate change integration, Charles et al. [1999] have
tested the stationarity of a statistical downscaling method
and found that a relative humidity predictor is required for
the reproduction of RCM simulated changes in precipitation
occurrence in a global warming experiment. Finally, several
intercomparison studies have adopted dynamical and statis-
tical downscaling for hydrological impact models and find,
in part, considerable differences between downscaling
methods [Wilby et al., 2000; Hay and Clark, 2003; Wood
et al., 2004].
[6] The comparison of downscaling methods in the

present study differs in several respects from these previous
studies, which makes it particularly informative:
[7] 1. It encompasses several models in each category:

three regional climate models and six statistical models.
This permits the comparison of variability within and
between categories of models. Also, we include fundamen-
tally different methodologies in the group of statistical
models (daily and seasonal models, single-site and multisite
models). This allows us to study the effect of differences in
general approaches.
[8] 2. The comparison is conducted for the mountain

range of the European Alps. Here, numerous mesoscale
flow features and precipitation processes shape a complex
and regionally variable precipitation climate [e.g., Frei and
Schär, 1998; Schär et al., 1998]. For example, in winter, it
is dominated by the regional response to synoptic
disturbances, whereas convection processes contribute in
summer. Hence the Alps constitute an ambitious test ground
for downscaling methods, but it is in such regions
that downscaling is needed most, because the mesoscale
processes are hardly resolved in current GCMs.
[9] 3. All downscaling methods are applied for a target

resolution of 50 � 50 km grid boxes, the nominal resolution

of the considered RCMs. This procedure avoids inconsis-
tencies between dynamical and statistical methods that arise
with the more common application of statistical models to
the site scale (i.e., models calibrated with station data).
[10] 4. We consider a range of statistics of the day-to-day

precipitation variability, including separate measures for
precipitation occurrence and intensity and measures for
heavy precipitation and long dry periods. In addition to
seasonal means, statistics on variability and extreme events
are relevant for many impacts.
[11] 5. This comparison examines the performance of

methods for present-day climate (using several different
skill measures) and illustrates similarities/differences in
the scenarios obtained when all methods are applied to
the same GCM climate change integration.
[12] The present study makes use of models and data

derived in a series of independent but interrelated scientific
projects of the European Union: The statistical downscaling
methods and the schemes adopted for model intercompar-
ison were developed and applied in the STARDEX project
[Goodess, 2003]. The reanalysis-driven RCM integrations
were taken from the MERCURE project and RCM climate
change integrations from the PRUDENCE project
[Christensen et al., 2007]. Several intercomparison studies
with a different focus have already been published on these
downscaling methods [e.g., Déqué et al., 2005; Frei et al.,
2003, 2006; Goodess et al., 2007; Haylock et al., 2006;
van den Hurk et al., 2005; Vidale et al., 2007].
[13] The outline of the paper is as follows: Section 2

introduces the precipitation predictands used and the pro-
cedures adopted in the comparison of downscaling models.
The downscaling models are described in section 3, together
with the adopted model chains. Section 4 compares results
obtained for present-day climate to observations, and
section 5 discusses regionalized precipitation scenarios from
a climate change integration. Finally, section 6 summarizes
the results and draws some conclusions.

2. Study Region, Predictand, and Analysis
Procedure

[14] The study region encompasses the region of the
European Alps (geographical area defined by 43.3�–
49�N, 2.1�–16.2�E). Its topographic structure is displayed
in Figure 1. The main feature is the arc-shaped mountain
range of the Alps, extending in a west-east direction over a
distance of 800 km. The ridge has a width of 100–300 km
and a typical crest height of 2500 m. The adjacent lowland
regions are interspersed by various hill ranges with spatial
scales of 50–200 km and typical elevations of 1000 m.
[15] As predictands we consider selected summary statis-

tics of daily precipitation (see Table 1), with the aim of
sampling the precipitation occurrence (FRE, XCDD) and
intensity process (INT, Q90, X1D, X5D). The diagnostics
are calculated seasonally for each grid point of an Alpine
mesoscale grid (see later). In addition, mean values for
selected subdomains (see Figure 1) are obtained by averag-
ing the diagnostics over all grid points in the subdomain.
These seasonal diagnostics are referred to as seasonal
indices (SI) in the text.
[16] SI from all downscaling models will be determined

for a regular lat-lon grid over the Alpine region. The grid
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spacing is 0.5� (approximately 50 km) and it resolves the
major climatic precipitation patterns of the Alpine region.
[17] The observational reference, used for the evaluation

of all methods and for the calibration of the statistical
downscaling methods, consists of daily precipitation analy-
ses on the above grid for the period 1966–1999. It has been
derived by spatial aggregation of rain gauge observations
into estimates of mean values for each grid pixel [Frei and
Schär, 1998]. Typically 10 to 50 station observations con-
tribute to the analysis at each grid point. The data set is very
similar to that used in a previous evaluation of RCMs by Frei
et al. [2003] and is referred to as OBS in the text.
[18] The analysis procedure for the evaluation and com-

parison of the downscaling methods is based on the SI.
Particular attention is given to the representation of inter-
annual variability, as measured by the correlation between
downscaled and observed interannual anomalies of the SI.
This measure provides insight into the reproduction of
regional climatic anomalies in response to the variation in
large-scale circulation. It quantifies the performance of a
model with regard to climate variations in addition to that
for climatological means [see also Lüthi et al., 1996; Vidale
et al., 2003]. The analysis is undertaken for each grid point
and also for the area mean SI of the subdomains defined in
Figure 1.

3. Downscaling Procedures

3.1. Techniques

[19] The downscaling models include six statistical
downscaling methods (SDMs) and three state-of-the-art

regional climate models (RCMs, dynamical downscaling).
Table 2 gives an overview of the basic features of the
SDMs. They can be grouped into single-site and multisite
methods and into daily and seasonal methods. In single-site
methods the statistical models are separately calibrated and
adopted for each grid point. Whereas multisite methods are
for spatial fields and hence take intersite correlations into
account. The daily methods operate on the daily timescale
with daily precipitation series as output. The statistical
model undergoes one calibration process and the SI are
derived from the daily output. The seasonal methods predict
directly series of SI and are therefore calibrated individually
for each index.
[20] A large number of potential predictors were consid-

ered for the development and calibration of the SDMs.
These include sea level pressure (SLP) and geopotential
height (Z), temperature (T), relative (RH) and specific
humidity (SH), divergence (DIV), vorticity (VOR), and
geostrophic velocity (VG) at different pressure levels (see
Table 2). In addition to these more conventional predictors,
further predictors such as moisture flux at 700 hPa
(MF700), objective circulation patterns (CPs), and raw
GCM precipitation (PRE) were considered for some of the
SDMs. Some SDMs use a fixed set of predictors, while
others select the predictors from a larger set of potential
predictors using automatic or semiautomatic procedures.
Often some form of cross validation is used for predictor
selection. One of the statistical models (LOCI) is a com-
paratively simple scaling of GCM precipitation to match
observed mean values. It is regarded as a benchmark in this
study because of its simplicity and because of the direct use
of GCM precipitation data [Schmidli et al., 2006]. Details of
SDMs and the selection of predictors are described in the
subsections below.
[21] The dynamical downscalingmethods (RCMs, Table 3)

encompass three classical limited area climate models, all
with full packages of physical parameterizations which may
differ between different models (see section 3.4 for more
details). The domains and grids are very similar between the
three RCMs. They cover the European continent and parts of
the northwestern Atlantic, with the Alpine region located
near the domain centers. The grid spacing of the models is
about 50 km. The integrations used in this study were
conducted in recent European climate modeling projects
(MERCURE and PRUDENCE). The selected models span
the range of behavior in Alpine precipitation found for a
larger set of European RCMs participating in these projects
[Frei et al., 2003, 2006]. The SI for the RCMs were
calculated on the respective native model grids and were
then interpolated to the common latitude-longitude grid of

Table 1. Diagnostics of Daily Precipitation Used in This Study

Acronym Definition Unit

MEA climatological mean precipitation mm per day
FRE wet-day frequency, days with precipitation � 1 mm fraction
INT wet-day intensity, mean precipitation on days with � 1 mm mm per day
Q90 empirical 90% quantile of precipitation on wet days mm per day
XCDD maximum number of consecutive dry days day
XND maximum N-day precipitation total (N = 1, 5) mm

Figure 1. Study region for model evaluation and inter-
comparison. Shading represents topographic height (m)
above MSL (18 km, aggregated from a digital elevation
model of about 2 km resolution). The boxes indicate
subregions used for specific analyses.
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our intercomparison (similar to Frei et al. [2003]). Details of
individual RCMs are described in subsection 3.4.

3.2. Experiments

[22] The downscaling experiments used in this study were
undertaken with a procedure that was as consistent as
possible with all the different methods. (Perfect consistency
was difficult to achieve given that the experiments came
from three different research projects.) The model chains of
all experiments are illustrated in Figure 2. In one set of
experiments downscaling methods were forced with large-
scale predictors/lateral boundary forcing from reanalysis
data and in a second set with predictors from climate change
simulations with a global climate model (GCM). The former
experiment is used for calibration and evaluation purposes.
Particular focus with these experiments will be given to the
representation of year-to-year anomalies in SI. Note that the
forcing of the methods by observed large-scale conditions
allows a comparison between downscaled and observed
anomalies [Lüthi et al., 1996; Vidale et al., 2003]. In
addition, the use of reanalysis predictors for the evaluation
experiment has the advantage of minimizing downscaling
errors due to biases in the large-scale predictors. This allows
for a better comparison of the performance of the down-
scaling methods per se. Note, however, that also reanalyses
are not free from biases and inhomogeneities [e.g., Reid et
al., 2001].
[23] In the case of RCMs, reanalysis driven downscaling

experiments are based on the 15-year ECMWF reanalysis
(ERA15 [Gibson et al. 1999]) for 1979–1993. Note that
these experiments originate from project MERCURE, and
that they were conducted when the newer 40-year reanalysis
(ERA40) was not yet available. As for the SDMs, reanalysis

driven experiments are based on the National Center for
Environmental Prediction reanalysis (NCEP [Kalnay et al.,
1996; Kistler et al., 2001]). Again, ERA40 was not avail-
able at the time these experiments were undertaken in
STARDEX, and ERA15 was considered too short for a
decent calibration of SDMs. To enable an independent
evaluation of the SDMs and a comparison to the RCMs,
the 15 years 1979–1993 are taken for evaluation. The
SDMs were calibrated over the remaining available period
of NCEP and OBS (1966–1978, 1994–1999). Note that all
potential predictor variables were interpolated to a standard
2.5� latitude/longitude grid.
[24] The climate change experiment with all downscaling

models was conducted with predictors/boundary-forcing
from the atmosphere-only GCM (HadAM3H/P) of the
Hadley Centre at the UK Met Office. HadAM3 was derived
from the coupled atmosphere-ocean model HadCM3
[Gordon et al., 2000; Johns et al., 2003] and is described
by Pope et al. [2000] (HadAM3H) and by R. G. Jones et al.
(A high resolution atmospheric GCM for the generation of
regional climate scenarios, manuscript in preparation, 2007)
(HadAM3P). The forcing fields for the downscaling models
came from GCM integrations for the time slices 1961–1990
(CTRL) and 2071–2100 (SCEN). For CTRL, the sea
surface temperature and sea ice distributions for HadAM3
were prescribed from observations of the same period. For
SCEN, sea surface conditions were constructed from obser-
vations and anomalies from a transient integration of
HadCM3 using the IPCC SRES A2 emission scenario
[Nakicenovic et al., 2000]. With this scenario, HadAM3
simulates a global mean surface temperature increase of
3.18 K between CTRL and SCEN (D. Rowell, personal

Table 2. Overview of the Statistical Downscaling Methodsa

Acronym Institution P Predictor(s) S Description

LOCI ETH d PRE si local scaling of GCM precipitation with
correction of frequency and intensity bias

CCA UEA s PCs of SLP, RH700, SH700, T700 mu canonical correlation analysis; 4–7 PCs per
predictor, 4–14 PCs per SI

MLR USTUT s ZX, RHX, TX, DIVX and VORX
with X = 500, 700, 850; MF700, CPs

si multiple linear regression; predictor values
are averaged over four nearest grid points

MAR USTUT d CPs, MF700 mu multivariate autoregressive model
CWG DMI d CI based on SLP si conditional weather generator, conditional

on quantiles of a CI (transition probabilities,
scale and location parameter)

ANA FIC d VG1000, VG500 mu two-step analogue method: (1) determine
the 30 most similar days and (2) determine pdf
of daily precipitation from all days within a season

aP, predictand; d, daily; s, seasonal; CP, circulation pattern; CI, circulation index; PC, principal component; S, space; si, single-site; mu, multisite; ETH,
ETH Zürich; UEA, University of East Anglia; USTUT, University of Stuttgart; DMI, Danish Meteorological Institute; FIC, Fundación para la
Investigatción del Clima. Further acronyms in section 3.

Table 3. Regional Climate Models From Which Results Are Analyzed in This Studya

Acronym Institution and Model Origin Number

CHRM Swiss Federal Institute of Technology (ETH), Zürich; climate version of
‘‘Europamodell’’ of German and Swiss weather services [Lüthi et al., 1996;
Vidale et al., 2003]

1

HADRM3 Hadley Centre, UK Meteorological Office, Exeter; regional model of climate model
suite at the Hadley Centre [Jones et al., 1995, 1997, 2004; see also
Pope et al., 2000]

3

HIRHAM Danish Meteorological Institute, Copenhagen; dynamical core from HIRLAM,
Parametrizations from ECHAM4 [Christensen et al., 1996]

3

aThe last column (Number) indicates the number of ensemble members available for the climate change scenario.
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communication, 2004). HadAM3 has a grid spacing of
about 150 km. However, again, predictors were interpolated
onto the standard 2.5� grid for the SDMs.
[25] Three ensemble integrations were carried out with

HadAM3 for both time slices, starting from different initial
conditions. All statistical models and two of the three RCMs
were driven by all six ensemble members.
[26] For historical reasons two different GCM simulations

have been used with the SDMs and the RCMs, which differ in
the GCM model version (Figure 2). The newer version,
HadAM3P, is used with the SDMs, and the older version,
HadAM3H, with the RCMs.We do not expect this difference
to disturb the comparability of our results. The two GCM
versions and the RCM simulations forced with either GCM
show very similar changes in the precipitation climate in
Europe and particularly in theAlps [see alsoFrei et al., 2006].
[27] While all predictor variables used for the SDMs

(including LOCI) are given on the same 2.5� latitude/
longitude grid, there are some differences in the specifica-
tion of boundary conditions for the RCMs. For two of the
three RCMs (CHRM and HIRHAM), GCM forced experi-
ments (CTRL and SCEN) were conducted with resolution-
degraded lateral boundary fields (every second grid point of
the GCM) and hence at a resolution comparable to that used
for the SDMs. The reanalysis-driven RCM runs, however,
used the full resolution of ERA15 (about 125 km), and
HadRM3 was forced by full-resolution HadAM3 boundary
conditions. We do not expect that this difference has a
significant impact on the comparability of experiments in
the Alpine region. Denis et al. [2003] have examined the
effect of degrading the resolution of lateral boundary con-
ditions in RCMs. They find high correspondence between
RCM experiments with resolution jumps of up to a factor
of 12. This was also the case for precipitation, both for the

time mean and intramonthly variations. Similarly, Beck et al.
[2004] find high correspondence between simulated precip-
itation in the European Alps for resolution jumps of 4 and 10.
The RCM experiments of the present study operate with
resolution jumps between approximately 3 (in the case of
MERCURE simulations) and 5 (for climate change experi-
ments). Hence we expect little inconsistencies from experi-
ments with different resolutions in boundary forcing.

3.3. Statistical Downscaling Methods (SDMs)

3.3.1. Canonical Correlation Analysis (CCA)
[28] The canonical correlation analysis (CCA, Table 2

[Barnett and Preisendorfer, 1987]) models the SI directly
using seasonal means of circulation variables. For each
season and precipitation index a CCAwas carried out using
all 15 possible combinations of four potential predictors.
The best set of predictors was selected using cross valida-
tion (see Table 4). The skill measure was the average
Spearman correlation over all grid points. Note that the
predictor set varies between indices and seasons but is
the same for all grid points. The CCA was performed on
the cross-covariance matrix of the leading principal compo-
nents (PCs) of the predictor and predictand field. Only
statistically significant PCs were retained [Barnett and
Preisendorfer, 1987]. Therefore the number of eigenvectors
retained was different for each predictor, predictand, and
season (see Table 2).
3.3.2. Multiple Linear Regression (MLR)
[29] Like the CCA, the multiple linear regression model

(MLR) downscales the SI directly from seasonal measures
of the large-scale circulation, but unlike CCA, it establishes
a separate model for each grid point. Each index is
expressed as a linear function of a set of potential predictors
(see Table 2), which were selected using correlation analysis

Figure 2. Overview of the model chains: (top) reanalysis chain, (middle) present climate GCM, and
(bottom) future climate GCM. See section 3 for acronyms.
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between the indices and all the available predictors. In
addition to seasonal means of the predictors, their seasonal
90th and 10th percentiles were considered as potential
predictor variables. Predictors for each index are then
selected from the potential predictors using the forward
selection method. The predictor values in the regression
equation are taken as the average over the nearest four grid
points to the target location. Note that apart from the more
common predictors this method also uses objective circula-
tion patterns (CPs [Bárdossy and Plate, 1992]) and moisture
flux at 700 hPa (MF700).
[30] The selected predictors for the indices vary from

season to season and from index to index. However, for a
given season the tendency is that the leading predictors for
most of the indices are similar (Table 5).
3.3.3. Multivariate Autoregressive Model (MAR)
[31] This is a classification based downscaling approach

based on the modified version of the space-time model
described by Bárdossy and Plate [1992]. The model is used
to generate daily series of precipitation at multiple locations
simultaneously by taking into account the spatial correlation
of the observed series. Objective circulation patterns de-
fined by classifying the distribution of anomalies of sea
level pressure using a fuzzy rule-based classification
scheme [Bárdossy et al., 1995, 2002] are used to condition
the model parameters.
[32] The distribution of the daily precipitation amount at a

given location and day is modeled by a random variable
with a mixed discrete-continuous distribution. The expected
value is modeled as a function of the moisture flux at
700 hPa and the circulation pattern type. For further details
see Stehlı́k and Bárdossy [2002].
3.3.4. Conditional Weather Generator (CWG)
[33] A conditional weather generator (CWG) [e.g.,

Goodess and Palutikof, 1998] is implemented as follows.
First, a surface pressure pattern is obtained as the average
pressure difference between wet and dry days observed at a
given station. Second, a circulation index is obtained by
regressing the daily surface pressure field onto this pattern.
The circulation index is divided into a number of quantiles,
usually between 5 and 10. Third, for each quantile the
following precipitation quantities are calculated: the proba-
bility for wet/dry days, the probabilities for a wet/dry day
following a dry/wet day, and the two gamma distribution
parameters for precipitation amount. Finally, a two-state
Markov Chain process combined with random sampling
from the gamma distribution [Wilks and Wilby, 1999] is
used to generate the daily precipitation series. Note that the
CWG was applied only for winter and summer.
3.3.5. Two-Step Analog Method (ANA)
[34] In the first step, a set of analogs (the 30 most similar

days) is selected from a reference data set on the basis of the

similarity of the geostrophic wind (direction and velocity) at
1000 and 500 hPa. In the second step, on the basis of the
30 analogs for each day of the season, a probabilistic model
for precipitation is built. The probabilistic model gives better
skill than using the average precipitation of the analog days.
Lower tropospheric humidity was tested as an additional
predictor, but it was found to give no additional skill.
3.3.6. Local Intensity Scaling (LOCI)
[35] The local intensity scaling (LOCI [Schmidli et al.,

2006]) uses GCM precipitation as a predictor, as proposed by
Widmann et al. [2003], in contrast to most statistical down-
scaling methods which use circulation-based predictors [e.g.,
Wilby and Wigley, 2000]. The idea is that GCM precipitation,
in some sense, integrates all relevant large-scale predictors.
Thus deviations between the large-scale GCM precipitation
and regional precipitation are to first order because of biases
from systematic GCM errors and the lack in surface orogra-
phy. Because GCM biases are less variable than relationships
with circulation indices, it is expected that the GCM precip-
itation predictor should be less vulnerable to nonstationar-
ities in the predictor-predictand relationship. In essence,
LOCI compensates for biases in wet-day frequency and
intensity of GCM precipitation by applying local corrections
to the precipitation frequency distribution at each predictand
grid point. A detailed description of LOCI is given by
Schmidli et al. [2006]. LOCI can be regarded as a correction
of GCM output which serves as a benchmark for more
sophisticated downscaling methods.

3.4. Regional Climate Models (RCMs)

3.4.1. CHRM
[36] CHRM originates from the operational weather fore-

casting model of the German and Swiss meteorological
services [Majewski, 1991], from which it was adapted into a
climate version at ETH Zürich [Lüthi et al., 1996; Vidale et
al., 2003]. Themodel has a resolution of 0.5� (about 55 km) in
a rotated pole coordinate system and 20 vertical levels in
hybrid coordinates. Modifications for the climate version
were made, among others, in the soil-atmosphere-vegetation
transfers, the physiographic and biophysical parameters, the
soil profiles and the convection scheme [see Vidale et al.,
2003].
3.4.2. HadRM3
[37] HadRM3 is the regional climate model of the Hadley

Centre of the UK Meteorological Office [Jones et al., 1995;
Noguer et al., 1998]. It is operated at a resolution of 0.44�
(about 50 km) and with 19 vertical levels. Its dynamics and
physical parameterizations are similar to HadAM3, the
atmosphere-only GCM from which the climate change
integration is downscaled in this study. HadRM3 and
HadAM3 are described by Jones et al. [2004] and details
of their physical parameterizations by Pope et al. [2000].
Two different model versions were used for the integrations
driven by reanalysis and GCM (HadRM3H and HadRM3P,

Table 4. Seasonal Variation of the Selected Predictors for the

CCA Methoda

Predictor

FRE INT/Q90 XCDD

wi su wi su wi su

SLP yes yes yes yes yes
RH700/SH700 yes yes yes yes yes yes
T700 yes yes

awi, winter; su, summer.

Table 5. Seasonal Variation of the Common Leading Predictors

for the MLR Method

Season Leading Predictors

Winter Z850, DIV850, MF700, RH700
Spring frequency of wet CPs, DIV850
Summer frequency of wet CPs, RH700, VOR500
Autumn Z850, DIV500
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respectively). The difference between the two versions for
precipitation statistics in the Alps is small [Frei et al., 2006].
3.4.3. HIRHAM
[38] HIRHAM is the RCM of the Danish Meteorological

Office. It is operated at a resolution of 0.44� (about 50 km)
and with 19 vertical levels. Its dynamical part originates
from HIRLAM [Källén, 1996] and the physical part
from ECHAM4 [Roeckner et al., 1996]. In this study, we
use HIRHAM integrations from an updated version of
HIRHAM4 [Christensen et al., 1996], using high-resolution
data sets of land surface characteristics [Christensen et al.,
2001] and a cyclic repetition for soil moisture initialization
[Christensen, 1999]. Results on European precipitation
statistics for the HIRHAM integrations used in this study
are also described in [Christensen and Christensen, 2003,
2004].

4. Reproduction of Present Climate

[39] This section focuses on the evaluation of the present-
day precipitation climate (period 1979–1993) as down-
scaled from the reanalysis runs (NCEP for the SDMs,
ERA15 for the RCMs, see Figure 2). The use of reanalysis
predictors/boundary fields allows a direct comparison of the
downscaled and observed climate including the year-to-year
variations of the SI. Also in reanalysis mode there are
generally smaller biases in the predictors in contrast to
downscaling from GCM control runs (see section 3.2).
The evaluation results for autumn are presented first and

in more detail (section 4.1), as autumn is the most important
season for heavy precipitation in the Alpine region. We
continue with a systematic evaluation including further
seasons and indices (section 4.2). Evaluation criteria include
biases and standard deviation of interannual anomalies, and
the correlation between downscaled and observed interan-
nual anomalies of the SI. Finally, the reanalysis and
HadAM3 control driven downscaling results are compared
(section 4.3) and the main findings are briefly summarized
(section 4.4).

4.1. Autumn Heavy Precipitation

[40] Figure 3 compares the spatial distribution of the
90% quantile (Q90) for autumn (SON) of the downscaling
models and the observations. Only a representative sample
of downscaling models is depicted for reasons of space. The
two RCMs and the seasonal SDMs (CCA and MLR) show
good qualitative correspondence with the gross regional
distribution. They reproduce the higher Q90 values along
the southern rim of the Alps and the three embedded maxima
exceeding 40 mm day�1 (SE of the Massif Central, south
central Alps and southeastern Alps). The daily downscaling
models (MAR, ANA) and the benchmark (LOCI) also
capture the gross regional distribution but they considerably
underestimate the orographic amplification of Q90. The
pattern of HIRHAM (not shown) is similar but with an
amplitude between that of ANA and MAR. It is not
surprising that larger biases are found for the daily SDMs
in comparison to the seasonal SDMs. While the former are

Figure 3. Q90 of daily precipitation (mm/d) in autumn (SON) for OBS (top left plot) and the models for
the ERA15 validation period 1979–1993.
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calibrated to reproduce mean precipitation, the latter meth-
ods directly use the observed Q90 values for model calibra-
tion. Despite considerable differences for some of the
downscaling models, all of them are much closer to the
observations than ERA40, which has a large dry bias. A
similar result was found for NCEP, not shown. As expected,
the SDMs reproduce the correct locations of the maxima (as
they have been calibrated against the climatology), while the
RCM-simulated maxima are occasionally shifted by a few
grid points relative to the observed maxima (because of, for
instance, departures of the model topography from the true
topography).
[41] Figure 4 compares the magnitude of the interannual

variations of Q90. The gross patterns are again well simu-
lated by the RCMs, with low variability north of the Alpine
crest and higher variability to the south. Some discrepancies
are found for the finer details of the patterns and the exact
location of the maxima. All SDMs, except the LOCI
benchmark, strongly underestimate the observed variability.
The domain average ratio of downscaled to observed
standard deviation of Q90 varies between about 2/3 for
MLR and 1/4 for ANA. Note also the substantial differences
between the two methodologically related methods CCA
and MLR. The underestimation is larger for the CCA model
which uses principal components of the predictands and
predictors instead of grid point values. As precipitation is a
relative quantity, meaning that the standard deviation is
larger where the mean is larger, it is expected that a model

with a negative bias will underestimate the variance. How-
ever, the variance underestimation by the SDMs is substan-
tially larger than would be expected from the model bias
alone (see Figures 3 and 4). This variance underestimation
is a well-known problem of SDMs [von Storch, 1999].
[42] Of particular interest for climate change applications

is the ability of a downscaling model to capture interannual
variations [e.g., Lüthi et al., 1996]. Figure 5 depicts the
spatial pattern of the anomaly correlation between down-
scaled and observed time series of SI. Only a representative
sample of downscaling models is included in order to
illustrate the differences between occurrence (FRE) and
intensity (INT) related indices. With respect to FRE, the
downscaling models are generally very skillful. The average
correlation varies from about 0.6 for MAR to 0.8 for LOCI
and ANA. Note, however, the large regional differences in
skill. For CHRM, for instance, the skill varies from values
below 0.4 in eastern parts of the domain, to values larger
than 0.9 in western parts of the domain. A similar behavior
was found for HADRM3 and HIRHAM, not shown. With
respect to INT, the downscaling skill is generally much
lower and spatially even more variable. This is not
surprising, as, in general, FRE is strongly dependent on
the large-scale atmospheric circulation forcing, whereas
INT depends more on local processes and moisture fluxes.
Similarities in the patterns for the different downscaling
models indicate that at least part of the large spatial
variability in skill is due to real differences in atmospheric

Figure 4. Interannual variability of Q90 (standard deviation) in autumn (SON) for OBS (top left plot)
and the models for the validation period 1979–1993.
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predictability from region to region, and not only to model
deficiencies. As for instance the tendency to higher corre-
lations along parts of the southern Alpine rim and the
tendency to lower correlations in the eastern part of the
domain. The generally higher skill for FRE, in comparison
to INT, is found also in the other seasons and it is
representative of the generally higher skill for occurrence
related indices (FRE, XCDD, MEA), in comparison to

intensity related indices (INT, Q90, X1D, X5D). It should,
however, be noted that autumn is not the season with the
highest skill (see below).

4.2. Systematic Evaluation

[43] How general are the results obtained for the autumn
season? In this section, we present a systematic evaluation
and comparison of the winter season which is characterized

Figure 5. Correlation between downscaled and observed interannual anomalies for autumn (SON) FRE
and INT for the validation period 1979–1993.
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by predominantly advective conditions and the summer
season where precipitation is often of convective nature,
for three representative subdomains (see Figure 1). These
subdomains cover the variability of the Alpine region with
flat areas (region WEST), the northern rim of the main ridge
(NALP), and a region with frequent heavy precipitation in
Ticino, southern Switzerland (TIC). The three regions
consist of 45, 27, and 15 grid points (0.5� grid), and they
cover an area of 1.5, 1 and 0.5 GCM grid points (2.5� grid),
respectively.
4.2.1. Bias and Standard Deviation
[44] Figure 6 summarizes the biases for winter and

summer for four SI and the three subdomains. The most
striking feature is the large difference in bias from region to
region. The difference between the regions is often larger
than the difference between the downscaling methods.
[45] In winter, the smallest biases are generally found for

the region WEST. Typically, the bias is less than 10%.
Larger discrepancies are found for HIRHAM, which has a
wet bias resulting from too frequent precipitation events
leading to too high FRE values and too low XCDD values
[see also Frei et al., 2003], and for CCA and CWG with too
short dry periods (XCDD too small). For the smaller and
more mountainous regions the biases are generally larger,
especially for TIC. The largest biases, typically around
30%, are found for HIRHAM, HADRM3 and MAR for
some of the indices/regions.
[46] In summer, the biases tend to be somewhat larger.

For the region WEST, the RCMs have substantial biases for
the occurrence related indices. CHRM, for instance, has a
(dry) frequency bias of about 10–20% and a resulting bias
in XCDD of 30–50%. The SDM biases in FRE and XCDD,
on the other hand, are smaller than 10%. For the intensity
related indices (INT, Q90), the RCMs and SDMs have
similar biases. Note that for these indices, the region TIC
is often the region with the smallest bias, at least for the
SDMs.
[47] In summary, the biases are of comparable magnitude

for the better RCMs and the better SDMs, with the excep-
tion of the occurrence-related indices (FRE, XCDD) in
summer, for which the RCMs tend to have larger biases.
Further conclusions, with respect to model differences, are
difficult to draw, because of the large variability of the bias
from region to region. However, the differences between the

regions appear to be quite systematic. In winter, the smallest
biases tend to be found for the region WEST, which is the
largest and least mountainous region. In summer, however,
the results are more variable.
[48] Figure 7 displays the ratio of downscaled to observed

standard deviation for winter and summer for the four SI
and the three subdomains. For this statistic, the differences
between the methods are larger than the differences between
the regions. Figure 7 corroborates our previous finding of
large underestimation of interannual variability by the
SDMs. For both winter and summer, for most indices and
SDMs, the downscaled standard deviation is smaller than
half of the observed value. For CWG it is often even less
than 25% of the observed value (which explains the missing
bar for CWG). Relatively good results are obtained for
ANA in winter for the occurrence indices (FRE, XCDD),
and for MAR for the region WEST in winter for the
intensity indices (INT, Q90). In comparison, the RCMs
simulate about the correct amount of variability.
4.2.2. Interannual Variations
[49] Figure 8 depicts the correlation skill of the SI for

winter and summer for the three subdomains. In order to
reduce the influence of stochastic/local forcing the SI are
aggregated over the respective subdomains prior to calcu-
lating the correlations with the observed SI. The results
confirm the tendency to higher correlations for the SI related
to the occurrence process (FRE, XCDD) than for the SI
related to the intensity process (INT, Q90). The difference
between the two categories is especially pronounced for the
SDMs in winter, with correlations between 0.6 and 0.9 for
FRE, but typically below 0.5 for INT and Q90. Note,
however, the very good skill for the intensity indices
(INT, Q90) for some of the models (CHRM, MAR, ANA)
for the region TIC in summer. For both seasons, the skill of
the benchmark (LOCI) is comparable to the skill of the best
downscaling models. The good results for LOCI, reflect the
generally good quality of the ERA40 reanalysis precipita-
tion with respect to temporal variations, quite in contrast to
its large bias. It should however be noted, that even a perfect
downscaling model would not obtain a correlation of 1.0
because of the limited predictability of the interannual
variations, especially for the summer season [cf. Vidale et
al., 2003].

Figure 6. Relative bias (MOD/OBS) in precipitation indices for winter and summer for the three
regions (squares indicate WEST, circles indicate NALP, triangles indicate TIC, and solid symbols
indicate RCMs) for the validation period 1979–1993.
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[50] Comparison of the correlation results for all seasons
and all indices shows that the analysis of just FRE (occur-
rence process) and INT (intensity process) gives a good
overall picture of the characteristics of a specific downscal-
ing model. The differences in skill between downscaling
models are very similar for indices from the same group.
Thus precipitation intensity (INT) is a good proxy, with
respect to skill, for the more extreme indices such as Q90,
X1D, and X5D. It is therefore sufficient to concentrate in
the following on the downscaling skill for FRE and INT.
[51] A comprehensive comparison of downscaling meth-

ods, regions, and seasons is given in Table 6. With respect
to the methods, the best overall skill in terms of anomaly
correlation is obtained for LOCI, the bias-corrected ERA40
reanalysis, followed by the RCMs (CHRM, HADRM3,
HIRHAM) and the daily SDMs (ANA and MAR).
The lowest overall skill is found for the seasonal SDMs
(MLR and CCA) and CWG. For FRE, good skill (correla-
tion r > 0.6) is found for all methods and all regions in
winter and autumn. For INT, on the other hand, good skill is
obtained only for LOCI and the better performing RCMs in
winter and autumn, and for some regions also for MAR
and ANA. With respect to the seasons, the highest skill
is obtained usually in winter, followed by autumn and
summer. For the region TIC, however, the highest skill is
observed in autumn, the most important season for heavy
precipitation and a time of high synoptic activity. Even in

summer, TIC has a relatively high skill for INT. With
respect to the regions, the ranking depends on the season.
In winter, the highest average skill is obtained for the region
WEST. Whereas in summer and autumn, the highest aver-
age skill is obtained for the region TIC.
4.2.3. Dependence of Downscaling Skill on the
Spatial Scale
[52] It has been shown that there are large variations in

skill between regions and between seasons. How large are
the variations in skill between subareas of a climatologically
relatively uniform region? In order to investigate this
question, we focus on precipitation intensity (INT), as this
is the more challenging parameter for downscaling methods,
but also the parameter which is more relevant for precipi-
tation extremes.
[53] Figure 9 depicts the correlation skill for the region

mean INT (as in Figure 8) and the range of correlations
obtained for individual grid points. Figure 9 makes the
differences between the downscaling methods, the regions,
and the seasons more clearly visible. In winter, the RCMs
are clearly superior to the SDMs for the regions NALP and
TIC, but of comparable skill to the SDMs MAR and ANA
for the region WEST. In summer, differences between the
RCMs and the SDMs are less systematic. The outstanding
result in this season is the relatively good skill for the region
TIC and the very low skill for NALP.

Figure 7. As in Figure 6 but for the ratio of standard deviations between models and OBS.

Figure 8. As in Figure 6 but for the correlation skill of the region mean precipitation index. The solid
black line denotes the 5% significance level of the null hypothesis of no correlation.
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Table 6. Summary Evaluation Based on Correlation Skill r for Region Mean Indicesa

Method

WEST NALP TIC

Number of Pluses rwi su au wi su au wi su au

LOCI-e40 +/+ +/+ +/+ +/+ +/+ +/+ +/. +/. +/+ 16 0.81
CHRM +/+ +/. +/. +/+ ./. +/+ +/+ ./+ +/+ 13 0.70
HADRM3H +/+ ./+ +/. +/+ ./. +/+ +/+ ./. +/. 11 0.66
HIRHAM +/. ./. +/. +/+ ./. +/. +/. ./. +/+ 8 0.59
CCA +/. ./. +/. +/. ./. +/. +/. ./+ +/. 7 0.39
MLR +/. +/. +/. +/. +/. +/. +/. +/. +/. 9 0.54
MAR +/+ +/. +/. +/. +/. +/. +/. ./+ +/+ 11 0.56
CWG +/. ./. +/. ./. +/. ./. 3 0.25
ANA +/+ +/. +/. +/. +/. +/. +/. ./+ +/+ 11 0.59

r 0.75 0.42 0.61 0.62 0.34 0.62 0.60 0.50 0.75 0.58

aEach pair of symbols represents the skill for FRE and INT, respectively. A plus denotes r > 0.6. The second to last column lists the number of pluses,
that is r > 0.6, for each method, and last column lists the correlation averaged over the regions and seasons (wi, winter; su, summer; au, autumn). The last
row lists the correlation averaged over the downscaling methods (negative correlations were set to zero prior to averaging). Note that typically r + 0.1 �
rFRE � r + 0.2, r � 0.2 � rINT � r � 0.1. However, for the region TIC in summer the skill for INT is higher than the skill for FRE (not shown).

Figure 9. Grid point correlations for INT for winter and summer for the three evaluation regions. The
shaded area indicates the range of correlations (90% interval) obtained for individual grid points (results
for 9 randomly selected grid points are denoted by thin lines). The dashed line (in blue) denotes the
median of the grid point values, and the bold line (in red) denotes the correlation for the region mean INT
(see Figure 8).
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[54] Comparing the mean correlation coefficient averaged
over all grid points (bold dashed line) to the correlation
coefficient for the subdomain mean (bold line) shows that
the former is typically lower. It is expected that spatial
aggregation increases the predictability by averaging out
local stochastic influences on the predictand.
[55] The wide range of correlations obtained for the

individual grid point series (shaded band) illustrates the
large spatial variability in skill, also within climatologically
relatively uniform regions. By examining the downscaling
skill for a selected set of grid points, we can determine
whether each method shows similar relative skill between
the grid points. The criss-cross of the lines for selected grid
points implies that an intercomparison of methods/regions
based on single grid points, or even worse, on single
stations, might often yield rather random results, especially
in summer. Note that the estimation error of the correlation
coefficient from relatively short time series is a major
contributor to the uncertainty (Figure 10). For example,
the 90% confidence range for a true correlation of 0.6
estimated from 15 years of data ranges from 0.24 to 0.83.
This estimation error is independent of the data source
(normal distribution data assumed) and the degree of spatial
aggregation. Much longer time series would be required for
clear results based on data from only single grid points
or stations. Therefore spatial aggregation is essential in
order to increase correlations and thus reduce sampling

uncertainty, and to detect significant differences when
comparing methods and regions.

4.3. HadAM3 Control Run

[56] In this section, results for the GCM chain for present
conditions (see Figure 2) are briefly presented and com-
pared with the reanalysis-driven results. Figure 11 depicts
the same validation statistics as Figures 6 and 7, but now for
the GCM-driven downscaling models and for the 1966–
1990 period. Comparison with Figure 6 shows that the
biases are mostly similar, especially the relative differences
between the methods. This indicates that for most models
the biases are not overly sensitive to the transition from
reanalysis to GCM forcing. (Larger differences are found
for MLR which uses local grid point predictors, and as
expected for LOCI which has to be recalibrated for the
GCM.) Comparison with Figure 7 confirms that the under-
estimation of interannual variation by the SDMs is a result
of the downscaling procedure and that it is not conditioned
by the coarser resolution of the NCEP predictors. Also,
intercomparison of the GCM-driven RCMs and of the
GCM- and reanalysis-driven runs shows that the resolution
of the boundary forcing has no measurable influence on the
results. This indicates that the error characteristics such as
bias and variance underestimation are largely determined by
the downscaling model and less by the driving GCM or
reanalysis, nor by the specific evaluation period. This
indirectly attests to the quality of the GCM used here and
to the appropriate choice and combination of accurate
predictors.

4.4. Summary

[57] 1. Performance is generally quite similar for indices
related to the occurrence process (FRE, XCDD) and for
those related to the intensity process (INT, Q90, X1D,
X5D); the skill for MEA is comparable to that for FRE.
Therefore results for just FRE and INT provide a good
characterization of a downscaling method. Typically, the
performance is best for FRE and MEA, a little lower for
XCDD, and substantially lower for the intensity indices.
(An exception to this rule is the summer season in region
TIC.)
[58] 2. There are large differences in performance from

region to region and from season to season. The ranking of
the seasons depends on the region. The performance is best
in winter and spring for the region WEST, in autumn and
winter for NALP, and in autumn and spring for TIC. On
average, summer is the season with the lowest skill in all
regions, but there are also exceptions to this rule.
[59] 3. The variation of the skill from grid point to grid

point within a given region can be very large, due partly to
random sampling errors [see also Goodess et al., 2007].
Thus considerable aggregation, as has been undertaken in
this study, is required in order to detect systematic differ-
ences when comparing methods and regions.
[60] 4. All downscaling models are able to reproduce

mesoscale patterns in the climatology (mean conditions in
SI) not resolved by the driving model. The spatial congru-
ence tends to be better for the SDMs than for the RCMs, for
which the patterns may be shifted by a few grid points. The
magnitude of the biases for the daily methods and the
RCMs (CHRM and HADRM3) are comparable. The small-

Figure 10. Illustration of the random sampling error of
the correlation coefficient estimated from time series of
length 15. Pairs of time series are generated from normally
distributed random variables with a given cross correlation
(x axis). The shading indicates the 50% and 90% range of
the obtained estimates, determined from Monte Carlo
simulation with 5000 repetitions. The dashed line indicates
that for a true correlation of 0.6, for example, the interval
required to cover 90% of the estimates extends from 0.24 to
0.83.
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est biases tend to be found for the better performing
seasonal SDMs.
[61] 5. All SDMs underestimate the magnitude of the

interannual variations, especially for the intensity indices
and the smaller regions. This underestimation is particularly
large for CWG and CCA. Relatively good results were
obtained in winter for MAR and the intensity indices and
for ANA and the occurrence indices. The RCMs produce
about the right amount of interannual variability.
[62] 6. Significant differences are found with respect to

the reproduction of interannual variations, in particular of
the intensity indices. In winter, two of the three RCMs
(CHRM and HADRM3) are clearly superior to the SDMs
for the two mountainous regions (NALP and TIC). The
differences are smaller over relatively flat terrain (WEST).
In summer, the same two RCMs and the better SDMs
(MAR and ANA) tend to have similar skill. In general,
the daily SDMs MAR and ANA tend to have higher skills
than the seasonal SDMs (CCA and MLR).
[63] 7. The performance of the LOCI benchmark is in

most cases comparable to the best downscaling models.
With respect to the SI, even the better RCMs tend to show
added value only for the region TIC. More generally,
however, it can be expected that the RCMs produce more
realistic daily fields and heavy precipitation events than the
LOCI benchmark. Even higher skill can be expected by
applying LOCI to RCM output, but this application was not
examined systematically in the present study.
[64] 8. For a given method and season, the bias patterns

are often very similar for indices from the same group (e.g.,
intensity indices). For the RCMs, in particular, the patterns
are often also similar for different seasons (e.g., winter and
autumn) and for different models. Thus there appear to be

regions for which downscaling is intrinsically more skillful
and others for which it is less skillful.

5. Simulated Change in Daily Precipitation
Statistics

[65] This section compares the simulated change of the
daily precipitation statistics, the SI, as downscaled by the
RCMs and the SDMs. All downscaling models were forced
by the HadAM3 integrations for the IPCC SRES A2
emission scenario (see section 3). Results are presented
for winter (advective regime), summer (convective regime),
and autumn (heavy precipitation regime).

5.1. Winter

[66] Figure 12 shows the change in mean precipitation in
winter (MEA, DJF). Mean precipitation was chosen because
it is expected to be one of the easier parameters to
downscale and nevertheless it is important for hydrological
applications. Most models (GCM, LOCI, the RCMs, and
ANA) show an increase north of the Alpine ridge and a
transition to small changes or decreases near the Mediter-
ranean. The two linear downscaling methods (CCA and
MLR) differ considerably, especially in the southern parts of
the domain, despite having a similar evaluation skill under
current climate conditions. According to the CCA method,
for which the main significant predictor is SLP, the scenario
conditions imply an enhanced WNW flow over most of
central Europe and the Alps leading to increases in mean
precipitation.
[67] A quantitative comparison of the downscaling mod-

els for the region WEST is provided in Figure 13. With
respect to the simulated change of MEA the downscaling

Figure 11. As in (top) Figure 6 and (bottom) Figure 7 but for the HadAM3 control run and the period
1966–1990.
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models fall into three groups. The RCMs, ANA and
CCA together with the GCM and LOCI show increases of
20–30%, the two SDMs MLR and MAR show increases of
40–60%, and CWG exhibits no changes. How are the
changes in MEA related the precipitation frequency and
intensity? For the RCMs the increase in MEA originates
from about equal increases in FRE and INT. For the SDMs
the relative contributions of FRE and INT are much more
variable between the methods. Overall the coherence be-
tween the RCMs is quite good. The changes obtained by the
SDMs, however, vary considerably from model to model,
even for similar downscaling methods (e.g., CCA and
MLR).

5.2. Summer

[68] Figure 14 compares the relative change in maximum
length of dry spells in summer (XCDD, JJA). All RCMs
show an increase of XCDD, whereas the SDMs show strong
decreases (CCA and MLR) or no change (MAR and ANA).
The simulated increase in XCDD is 50–100% for the GCM,
LOCI, CHRM, and HadRM3P, and 25–50% for HIRHAM.
The results obtained for the SDMs are much more variable
and range from no change for MAR, ANA, and CWG (not
shown), to large decreases of XCDD, by more than a factor
of two, for CCA and MLR. In view of the low evaluation

skill, these results are not interpreted any further. Similar
patterns of change are found also for FRE, that is strong
decreases of FRE for the RCMs, and large increases or no
change for most SDMs (not shown).
[69] The quantitative comparison of the indices for sum-

mer (Figure 15) reveals much larger differences between the
methods than in winter. Note that for MLR there is an
inconsistency in the changes for FRE and XCDD, both
indices show a decrease (XCDD by a factor of 2 and more).
Such inconsistencies can arise in seasonal methods when
different empirical models are developed for individual
indices. For example, independent scenarios for FRE and
INT do in general not result in a similar change as an
independent scenario for MEA. These inconsistencies are
potentially a serious drawback of the seasonal methods. The
daily downscaling methods (MAR and ANA), on the other
hand, provide time series of daily precipitation and therefore
the SI will implicitly be more consistent.

5.3. Autumn

[70] Figure 16 depicts the relative change of the 90%
quantile in autumn (Q90, SON). The RCMs and MAR show
increases in Q90. Again, the other SDMs show no changes
(CCA and ANA) or even decreases (MLR). According to
the CCA method, for which the main significant predictor in

Figure 12. Ratio (SCEN: 2071–2100/CTRL: 1961–1990) of MEA in winter (DJF). Results are from
the GCM, 3 RCMs, and 5 SDMs under the A2 emission scenario. Note the log scale in the color coding.
The dashed line (red) indicates areas with statistically significant (5%) change, in an independent (Mann-
Whitney) test at each model grid point. Note that the increases are statistically significant for changes
smaller than 10% for the SDMs, because of their smaller interannual variability, for changes of
about 15% for HADRM3P and HIRHAM (3 ensemble members), and for changes of 20–30% for
CHRM (1 ensemble member).
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autumn is SLP, the scenario conditions imply a reduction of
low-pressure conditions in the Alpine region leading to
lower precipitation frequency.
[71] Figure 17 reveals a coherent picture for the RCMs: A

moderate decrease in MEA resulting from a strong decrease
in FRE which is partially compensated by an increase in
INT. Consistent with this we found also an increase in Q90
and XCDD. Note also that the differences between the three
subregions are smaller than for any of the other seasons.

The SDMs, on the other hand, exhibit mainly smaller or
even no changes.

6. Summary and Conclusions

[72] In the present study we undertook an intercompari-
son of daily precipitation statistics as downscaled by nine
different downscaling models, six statistical and three
dynamical, for the region of the European Alps. The

Figure 13. Simulated change (ratio SCEN/CTRL) in region mean precipitation diagnostics for the
region WEST for winter (DJF).

Figure 14. As in Figure 12 but for XCDD in summer (JJA).
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evaluation of the downscaling models for present climate
conditions shows that the performance varies substantially
from region to region and from season to season, and
that the performance is generally better for the indices
related to precipitation occurrence than for those related to
precipitation intensity. Nevertheless, a clear pattern emerges
with respect to the reproduction of interannual variations.
In winter, the better performing RCMs (CHRM and
HADRM3) are clearly superior to the SDMs for the two

mountainous regions (NALP and TIC). In summer, how-
ever, the two RCMs and the better performing SDMs (MAR
and ANA) tend to have similar correlation skill. Note that
all SDMs tend to strongly underestimate the magnitude of
the interannual variations, especially in summer and for the
indices related to precipitation intensity. It was found that
the variation of the correlation skill from grid point to grid
point within a given region can be very large, due partly to
random sampling errors [see also Goodess et al., 2007].

Figure 15. As in Figure 13 but for summer. Note that the symbols for XCDD for CCA and MLR are not
visible, because of values below 0.5.

Figure 16. As in Figure 12 but for Q90 in autumn (SON).
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Thus aggregation over several to many grid points is
required in order to identify the reliability of and assess
differences between methods. Analyses based on single grid
points or even single stations would be of very limited use
in a highly complex region such as the European Alps.
[73] The RCM simulated future change in European

precipitation climate shows a seasonally very distinct pat-
tern: In winter, regions north of about 45�N experience an
increase in mean precipitation while in the Mediterranean
region there is a tendency toward decreases [see also Frei et
al., 2006]. Results are very consistent between the three
RCMs. All three RCMs attribute the increase in mean
precipitation (MEA) about equally to an increase in wet-
day frequency (FRE) and precipitation intensity (INT). In
addition the spatial patterns of relative change are quite
similar. Most of the SDMs produce an increase in mean
precipitation similar to that of the RCMs. However, the
partition of the increase between FRE and INT
varies considerably between the SDMs. Nevertheless, the
general agreement between the downscalingmodels suggests
that the downscaled scenario for winter can be considered
fairly reliable and robust, at least for the particular GCM
scenario.
[74] In summer, the RCMs simulate a strong decrease in

mean precipitation in the entire Alpine region. This decrease
is mainly due to a substantial reduction of the wet-day
frequency. The smaller number of wet days results in a large
increase, 50–100%, of the maximum length of dry spells
(XCDD). In comparison to winter, the differences between
the downscaling models, especially between the RCMs
and the SDMs, but also between the RCMs, are much
larger. Even the two daily SDMs with good evaluation skill
(MAR and ANA), produce almost no changes or decreases.
This suggests that the RCM simulated changes for summer
are not primarily related to large-scale circulation changes.
Possibly, physical feedback processes with, for instance,
the land surface [e.g., Wetherald and Manabe, 1995;
Seneviratne et al., 2002; Schär et al., 2004] may contribute
to the scenario. Overall the differences between the RCMs

and SDMs, and the substantial biases of the RCMs in
summer highlight the still large uncertainties of the scenario
results for the summer season.
[75] In autumn, the region experiences a decrease in mean

precipitation resulting from a strong decrease in wet-day
frequency and moderate increase in precipitation intensity.
Again the results are very similar for the three RCMs.
[76] It is interesting to compare the scenario changes for

winter and autumn. In winter, the simulated changes in FRE
and INT have the same sign, both indices increase by about
10%. In autumn, on the other hand, the simulated changes
are of opposite sign. The similar changes of INT in autumn
and winter (and also spring) suggests that the increase might
be related to an intensification of the hydrological cycle
associated with a warming-related increase of atmospheric
moisture content [e.g., Frei et al., 1998; Allen and Ingram,
2002; Trenberth et al., 2003]. Note that this pattern, same
sign of FRE and INT in winter and opposite sign in autumn
is also found in the observed trends for the 20th century
[Schmidli and Frei, 2005].
[77] From the many sources of uncertainty associated

with scenarios for climate change impacts, the present study
has focused entirely on uncertainties related to the deriva-
tion of regional climate information, that is to statistical and
dynamical downscaling. The present analysis suggests that
the contribution to uncertainty from downscaling is rela-
tively small in winter and autumn, but very significant in
summer because of stochastic processes appearing at the
mesoscale. These mesoscale processes are more significant
in summer and thus make the details of the downscaling
more important in summer. Clearly, more research will be
needed to understand the different model responses and
eventually reduce the spread in the projections.
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Figure 17. As in Figure 13 but for autumn.
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Lüthi, D., A. Cress, H. C. Davies, C. Frei, and C. Schär (1996), Interannual
variability and regional climate simulations, Theor. Appl. Climatol., 53,
185–209.

Majewski, D. (1991), The Europa Modell of the Deutscher Wetterdienst,
paper presented at ECMWF Seminar on Numerical Methods in Atmo-
spheric Models, Eur. Cent. for Med.-Range Weather Forecasts, Reading,
U. K.

Mearns, L. O., C. Rosenzweig, and R. Goldberg (1997), Mean and variance
change in climate scenarios: Methods, agricultural applications, and mea-
sures of uncertainty, Clim. Change, 35, 367–396.

Mearns, L. O., I. Bogardi, F. Giorgi, I. Matyasovszky, and M. Palecki
(1999), Comparison of climate change scenarios generated from regional
climate model experiments and statistical downscaling, J. Geophys. Res.,
104, 6603–6621.

Mearns, L. O., F. Giorgi, P. Whetton, D. Pabon, M. Hulme, and M. Lal
(2003), Guidelines for use of climate scenarios developed from regional
climate model experiments, technical report, Data Distrib. Cent., Inter-
govt. Panel on Clim. Change, Norwich, U. K.

Murphy, J. (1999), An evaluation of statistical and dynamical techniques
for downscaling local climate, J. Clim., 12, 2256–2284.

Murphy, J. (2000), Predictions of climate change over Europe using statis-
tical and dynamical downscaling techniques, Int. J. Climatol., 20, 489–
501.

Nakicenovic, N., et al. (2000), Special Report on Emission Scenarios, 599
pp., Cambridge Univ. Press, New York.

Noguer, M., R. Jones, and J. Murphy (1998), Sources of systematic errors
in the climatology of a regional climate model over Europe, Clim. Dyn.,
14, 691–712.

Osborn, T. J., and M. Hulme (1997), Development of a relationship
between station and grid-box rainday frequencies for climate model
evaluation, J. Clim., 10, 1885–1908.

D04105 SCHMIDLI ET AL.: DOWNSCALING PRECIPITATION IN THE ALPS

19 of 20

D04105



Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton (2000), The
impact of new physical parametrizations in the Hadley Centre climate
model: HadAM3, Clim. Dyn., 16, 123–146.

Reid, P. A., P. D. Jones, O. Brown, C. M. Goodess, and T. D. Davies
(2001), Assessments of the reliabiliy of NCEP circulation data and
relationships with surface climate by direct comparisons with station
based data, Clim. Res., 17, 247–261.

Roeckner, E., et al. (1996), The atmospheric general circulation model
ECHAM-4: Model description and simulation of present-day climate,
Tech. Rep. 218, Max-Planck Inst. für Meteorol., Hamburg, Germany.

Schär, C., T. D. Davies, C. Frei, H. Wanner, M. Widmann, M. Wild, and
H. C. Davies (1998), Current Alpine climate, in A View From the Alps:
Regional Perspectives on Climate Change, edited by P. Cebon et al., pp.
21–72, MIT Press, Cambridge, Mass.
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Switzerland. (schmidli@ucar.edu)
T. Schmith, Danish Meteorological Institute, DK-2100 Copenhagen,

Denmark.

D04105 SCHMIDLI ET AL.: DOWNSCALING PRECIPITATION IN THE ALPS

20 of 20

D04105


