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ABSTRACT

Most numerical weather prediction models rely on a terrain-following coordinate framework. The computa-
tional mesh is thus characterized by inhomogeneities with scales determined by the underlying topography. Such
inhomogeneities may affect the truncation error of numerical schemes. In this study, a new class of terrain-
following coordinate systems for use in atmospheric prediction models is proposed. Unlike conventional systems,
the new smooth level vertical (SLEVE) coordinate yields smooth coordinates at mid- and upper levels. The
basic concept of the new coordinate is to employ a scale-dependent vertical decay of underlying terrain features.
The decay rate is selected such that small-scale topographic variations decay much faster with height than their
large-scale counterparts. This generalization implies a nonlocal coordinate transformation. The new coordinate
is tested and compared against standard sigma and hybrid coordinate systems using an idealized advection test.
It is demonstrated that the presence of coordinate transformations induces substantial truncation errors. These
are critical for grid inhomogeneities with wavelengths smaller than approximately eight grid increments, and
may overpower the regular-grid truncation error of the underlying finite-difference approximation. These results
are confirmed by a theoretical analysis of the truncation error. In addition, the new coordinate is tested in
idealized and real-case numerical experiments using a nonhydrostatic model. The simulations using the new
coordinate yield a substantial reduction of small-scale noise in dynamical and thermodynamical model fields.

1. Introduction

Most numerical weather prediction (NWP) models
employ some kind of terrain-following vertical coor-
dinate system (e.g., Phillips 1957; Gal-Chen and Som-
merville 1975; Simmons and Burridge 1981; Zhu et al.
1992; Webster et al. 1999). Such coordinates provide
several important advantages: First, they map the at-
mospheric domain under consideration upon a rectan-
gular computational mesh whose data structure is well
suited for implementation on digital computers. Second,
as the transformed vertical wind in computational space
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vanishes on the level of the topography, terrain-follow-
ing coordinate transformations yield a simplification of
the lower boundary condition. Third, as the approach
allows for an unequal spacing of computational levels,
it provides an easy method to couple the dynamical part
of atmospheric prediction models with boundary and
surface-layer parameterization schemes.

Despite these attractive properties, the introduction
of terrain-following coordinates also implies serious dis-
advantages. Early research in this area relates to the
detrimental impact of terrain-following coordinates
upon the numerical formulation of the horizontal pres-
sure gradient term (e.g., Janjić 1989). More recently,
Klemp et al. (2002, manuscript submitted to Mon. Wea.
Rev., hereafter KSF). Used linear theory to analyze the
role of terrain-following transformations on gravity
wave generation and propagation. They demonstrate the
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importance of a consistent numerical treatment of hor-
izontal and vertical terms of the advection equation. The
respective consistency assures that the appropriate nu-
merical cancellations take place when differencing the
fields on sloping coordinate surfaces. Lack of this can-
cellation leads to spurious small-scale forcing and may
inflict significant distortions of the true solution, even
for small-amplitude topography.

As an alternative to terrain-following transforma-
tions, coordinates with horizontal or quasi-horizontal
computational surfaces have also been proposed. The
potential usefulness of this approach in representing oro-
graphic blocking has been recognized for some time
(Egger 1972), and a complete implementation in hy-
drostatic form has been realized by Mesinger et al.
(1988). This quasi-horizontal coordinate is successful
in avoiding horizontal pressure gradient errors on the
synoptic scale, but the formulation has difficulties in
representing flow over mesoscale topography (Gallus
and Klemp 2000) and appears to be ill suited for high-
resolution prediction models. Alternative formulations
of z coordinates using shaved cells have also been pro-
posed (Adcroft et al. 1997) and produce excellent results
for some mesoscale adiabatic flows (Bonaventura 2000).
However, the implementation of such coordinates in
NWP models will require major modifications to pa-
rameterization packages.

Irrespective of the coordinate formulation under con-
sideration, numerical solutions to orographic flow prob-
lems will deteriorate as the horizontal grid increment
approaches the scales of the represented topographic
features. A systematic analysis of Davies and Brown
(2001) for dry flows demonstrates that the underrep-
resentation of orographic features will result in a sub-
stantial underestimation of the orographic drag, and ex-
perience with moist flows demonstrates that spurious
precipitation may result from underresolved topography
(Steppeler et al. 2001, hereafter SMAP). In order to
circumnavigate these limitations, the digital topography
used in operational NWP models is usually subjected
to digital filtering. However, removing the whole range
of underresolved terrain features would substantially re-
duce the height of topographic barriers and thereby in-
flict an underestimation of orographic blocking effects.

Comparatively little research has been carried out to
evaluate the performance of classical numerical algo-
rithms in the presence of terrain-following coordinate
transformations. For instance, there is an extensive body
of literature on properties of advection schemes in the
presence of small-scale anomalies and regular grids, and
this information is usually consulted when a scheme is
evaluated for implementation in an atmospheric model.
Yet the behavior of the same schemes in the presence
of coordinate transformations has not been thoroughly
investigated. Indeed, as will be shown in this paper,
truncation errors inflicted by small-scale topographic
features may become highly relevant.

The purpose of this study is twofold. First, we will

investigate how various coordinate formulations behave
in an idealized advection test. The test involves the hor-
izontal advection of large-scale anomalies over an ob-
stacle containing small-scale topographic features. It
will be demonstrated that the truncation errors associ-
ated with standard coordinate transformations are crit-
ical and may, in fact, overpower the classical regular-
grid truncation error of the underlying finite-difference
approximation. Second, a new vertical coordinate for-
mulation is proposed. This formulation allows the gen-
eration of a much smoother computational mesh and,
thereby, drastically reduces the transformation errors re-
ferred to above. The key idea in generating this smooth
coordinate is to adopt a scale-dependent decay with
height of underlying terrain features. In essence, small-
scale features are assigned fast decay rates, such that
their signatures almost or completely disappear at upper
levels. Well-resolved terrain features, on the other hand,
do not pose a problem to numerical schemes and are
allowed to decay much more slowly. The new coordi-
nate will be referred to as smooth level vertical (SLEVE)
coordinate.

The issue of small-scale topography and associated
grid transformations is likely to gain importance in the
near future, due to the continued increase in horizontal
resolution of operational weather prediction and climate
models (e.g., Benoit et al. 2002). For illustration, Fig.
1 displays a vertical cross section across the Alps at a
horizontal resolution of 1 km. The diagrams to the left
and right show the whole depth of the domain and its
lower portion, respectively. Three coordinate formula-
tions are considered. The classical sigma formulation
(Figs. 1a,b) yields a very rough grid. Individual terrain
features and mountain peaks are well visible in the co-
ordinate surfaces, even at tropopause level. The use of
hybrid coordinates (Figs. 1c,d) reduces the amplitude
of these features, but not their presence itself. Only the
new SLEVE coordinate formulation yields a smooth
grid at midtropospheric levels (Figs. 1e,f).

We begin in section 2 by presenting the mathematical
background and by providing the formulation of the new
vertical coordinate transformation. Section 3 is devoted
to a simplified advection test. The performance of sev-
eral finite-difference schemes will be investigated using
the three terrain-following coordinate transformations
depicted in Fig. 1. In section 4, a theoretical analysis
is presented of the truncation error’s behavior in the
presence of coordinate transformations. Section 5 finally
discusses idealized and real-case numerical experiments
using a nonhydrostatic numerical model. The study will
be concluded in section 6.

2. Coordinate definition

a. Preliminaries

We consider a Cartesian computational domain
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FIG. 1. Vertical cross section showing three distributions of vertical coordinates. Left-hand panels
show the full model depth (H 5 25 km) with a coordinate spacing of Dx 5 1 km; right-hand panels
zoom into the lowermost 10 km with a coordinate spacing of 500 m. The three coordinates depict
(a),(b) the sigma coordinate, (c),(d) a hybrid coordinate, and (e),(f ) a SLEVE coordinate with a
scale-dependent vertical decay of terrain features. The domain has a length of 150 km, a resolution
of Dz 5 1 km, and shows the Alpine topography at 7.878E extending from the Po valley over the
Monte Rosa massif and the Bernese Alps to the Rhine (from left to right). The coordinate formulation
in (c),(d) is based upon (11) with s 5 6 km, and in (e),(f ) it is based upon (14) with s1 5 10 km,
s2 5 2 km.

x # x # x , y # y # y ,min max min max

h(x, y) # z # H, (1)

that is confined below and above by the topographic
height h(x, y) and an upper lid at height H, respectively.

Generalized vertical coordinates may then be defined
by a coordinate transformation of the form

Z 5 Z(x, y, z). (2)

Gal-Chen and Sommerville (1975) discuss two neces-
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FIG. 2. Vertical coordinate (full lines) and inverse of the Jacobian
J21 5 ]z/]Z (dashed lines, contour interval 5 0.05) for three coor-
dinates: (a) sigma coordinate, (b) coordinate with exponential decay
(11) based on a value of s 5 H, and (c) as in (b) but with s 5 H/3.

sary conditions for terrain-following coordinates: First,
the transformation must map the computational domain
(1) onto a rectangular domain in (x, y, Z) space. This
requirement is met by imposing the boundary conditions

Z [x, y, h(x, y)] 5 0 and Z(x, y, H ) 5 H. (3)

Second, the transformation must be invertible, so that
the inverse transformation z 5 z(x, y, Z) exists. This
requires Z(z) to be a strictly monotone function; that is,

]Z
J 5 . 0, (4)

]z

where J denotes the Jacobian of the transformation.

b. Vertical decay functions

To describe the vertical decay of terrain features with
height, most atmospheric models use either one of two
approaches. The first was proposed by Gal-Chen and
Sommerville (1975) who investigated a specific trans-
formation given by

z 2 h(x, y)
Z(x, y, z) 5 H or (5)

H 2 h(x, y)

z(x, y, Z ) 5 h(x, y) 1 Z[H 2 h(x, y)]/H. (6)

This transformation, referred to as sigma coordinates,
is particularly simple and implies a linear decay of the
terrain features with height, while the Jacobian of the
underlying transformation is independent of height; that
is, ]J/]Z 5 0.

The second approach is based on Simmons and Bur-
ridge (1981). They proposed a hybrid pressure-based
coordinate that is particularly popular in hydrostatic
NWP models. The respective transformation in z co-
ordinates may be written as

z(Z) 5 Ha(Z) 1 hb(Z). (7)

Here the functionals a and b are usually specified in a
table and need to satisfy

a(Z 5 0) 5 0, a(Z 5 H ) 5 1,

b(Z 5 0) 5 1, b(Z 5 H ) 5 0 (8)

in order to be consistent with the boundary conditions
(3).

In our study we employ an alternative vertical mesh
structure where the decay with height of underlying ter-
rain features is stipulated as an exponential function
according to

2Z/s 1Z/sz(Z) 5 Z 1 h[ae 1 be ]. (9)

The parameters a and b are then specified such as to
satisfy the boundary conditions (3); that is,

2H /se 21
a 5 b 5 . (10)

2H /s 2H /se 2 1 e 2 1

Rearranging the terms simplifies (9) to

sinh[(H 2 Z )/s]
z(Z ) 5 Z 1 h . (11)

sinh[H/s]

Here the single scale parameter s plays the role of a
scale height; that is, the underlying terrain features ap-
proximately decay by a factor 1/e over a depth s. With
s ø H, the resulting coordinate structure is qualitatively
comparable to sigma coordinates. With s , H, a hy-
bridlike setting is obtained.

The motivation for using the exponential decay (11)
is fourfold: First, unlike with sigma coordinates, the
vertical decay affects not only the coordinate height
itself, but also the Jacobian and all other metric terms
(cf. Figs. 2a and 2b). Second, despite its simplicity, the
formulation allows for coordinates that are comparable
to classical hybrid formulations (see Fig. 2c). Third, the
explicit specification of a decay function by an analyt-
ical formula is superior to the specification of the com-
putational levels in a table, since the latter may limit
the order of accuracy of the resulting finite-difference
approximation. Fourth, the decay function is defined by
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one single parameter (the scale height, s), and this sim-
plicity is ideal for sensitivity studies and comparisons
as those to be presented in section 3.

While in the following we will restrict our attention
to vertical decay functions according to (11), the pro-
cedure in the next sections may easily be generalized
to coordinates based on any other decay function, as
well as to treatments with a stretched spacing of the
computational levels.

c. Definition of new coordinate

Currently, most terrain-following coordinates are
based on a special class of vertical coordinates that entail
a local transformation, whereby the transformation at a
location (x, y) depends upon the height of the underlying
topography alone; that is,

Z(x, y, z) 5 Z(h(x, y), z). (12)

As a result, any terrain feature exhibits the same vertical
decay, irrespective of its shape and horizontal scale. The
basic concept of the new coordinate is to make better
use of the generality of (2), and to employ a scale-
dependent vertical decay of underlying terrain features.
More specifically, the decay rate is selected such that
small-scale topographic variations decay much faster
with height than their large-scale counterparts. This gen-
eralization implies a nonlocal transformation not ame-
nable to (12).

In its simplest form, the transformation is defined in
terms of two different scale heights, which govern the
vertical decay of the larger- and smaller-scale contri-
butions of the topography, respectively. To this end, the
topography is split into

h(x, y) 5 h (x, y) 1 h (x, y),1 2 (13)

where the subscripts 1 and 2 refer to large-scale and
small-scale contributions, respectively. In practice, the
large-scale contribution h1 can be obtained from the full
topography by an appropriate smoothing operation. The
coordinate is then defined by the relationship

z(Z) 5 Z 1 h (x, y)b (Z) 1 h (x, y)b (Z),1 1 2 2 (14)

where, following (11), the vertical decay functions are
given by

sinh[(H 2 Z )/s ]ib (Z ) 5 . (15)i sinh[H/s ]i

The second and the third term in (14), respectively,
govern the decay with height of large- and small-scale
terrain features with the scale heights s1 and s2.

All coordinates to be considered in this study may be
viewed as special cases of (14). For sigma coordinates
(6), the respective functionals read

H 2 Z
b (Z ) 5 b (Z ) 5 , (16)1 2 H

and for the hybrid formulations (11),

sinh[(H 2 Z )/s]
b (Z ) 5 b (Z ) 5 . (17)1 2 sinh[H/s]

Similarly both these coordinates may also be interpreted
as special cases of the Simmons and Burridge coordinate
with a(Z) 5 Z/H.

d. Metric terms

The implementation of a numerical model in the co-
ordinates (x, y, Z) requires the usual transformation of
the governing system of equations (e.g., Gal-Chen and
Sommerville 1975; Clark 1977). As a result, metric
terms appear in the transformed system of equations. In
general, the following terms will be needed:

21J 5 ]z/]Z, ]z/]X, ]z/]Y, (18)

where ]/]X and ]/]Y denote derivatives on Z surfaces.
In many sigma-coordinate formulations, it is common
practice to hard-code the selected transformation. This
procedure implies recomputing the metric terms when-
ever needed. With the new transformation it will be
more efficient to store all or some of the metric terms
as a function of the three-dimensional grid.

The computation of the metric terms may be per-
formed using the analytical definition of the coordinate
based on (14) and (15). In practice, however, it will
often be more convenient to compute the metric terms
using finite differences. For instance, consider an Ar-
akawa C grid, which uses velocity components DX/Dt
5 (u, y, W) that are staggered by half-grid increments
in the respective directions. For this grid, z(x, y, Z) can
be defined on a staggered mesh as zi,j,k11/2 based on (14)
and (15). Finite differences can then be employed to
compute (J21)i,j,k at the mass point i, j, k of the grid.
This treatment is also consistent with the properties of
conservative finite-difference approximations.

e. Invertibility condition and choice of vertical decay
rate

According to (4), the invertibility condition implies
that Z(z) is a strictly monotone function. With (14) and
(15) this yields

]z h cosh[(H 2 Z )/s ]1 121J 5 5 1 2
]Z s sinh[H/s ]1 1

h cosh[(H 2 Z )/s ]2 22 . 0. (19)
s sinh[H/s ]2 2

This condition is most restrictive on the surface level
Z 5 0 where the hyperbolic cosine terms have maximum
amplitude. A sufficient (but not necessary) condition of
invertibility can thus be expressed as
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FIG. 3. Dimensionless display of g according to (20) providing a lower bound to the Jacobian J of the new coordinate transformation.
The horizontal and vertical axes are spanned by dimensionless values of the two scale heights for topographic features, respectively: (a) for
h1,max/H 5 h2,max/H 5 0.1 and (b) for h1,max/H 5 h2,max/H 5 0.05. Settings of (s1/H, s2/H ) in the gray area have J # 0 and violate the
invertibility condition.

h H H1,max:g 5 1 2 coth1 2H s s1 1

h H H2,max2 coth $ 0, (20)1 2H s s2 2

where hi,max 5 maxx,y[hi(x, y)]. The term g always sat-
isfies ]z/]Z $ g and thus measures how close a coor-
dinate definition based upon values of (s1, s2) is located
to the invertibility threshold. In addition, g provides a
dimensionless measure of the minimum thickness of the
lowermost coordinate layer as well as pertinent infor-
mation on the vertical advective Courant number:

wDt 1 wDt
a 5 # . (21)z Dz g DZ

Explicit formulations with small values of g may require
a reduction of the time step to ensure a stable integration,
as the coordinate transformation compresses the com-
putational layers.

Equation (21) is used in Fig. 3 to plot the invertibility
condition g for selected pairs of (h1,max/H, h2,max/H) as
a function of (s1/H, s2/H). The optimal choice of the
scale heights si will depend upon the problem under
consideration. For many atmospheric applications it ap-
pears optimal to choose s1 ø 10 km and, subsequently,
to minimize s2 for a specified value of g . 0. Such a
setting will achieve two goals: quasi-horizontal com-
putational surfaces in the stratosphere, and a rapid decay
of small-scale terrain features within the troposphere.
In general, the invertibility condition (20) appears not

to be seriously limiting. For instance, for a topography
characterized by h1,max ø h2,max ø 1500 m and a model
domain with H 5 25 km, the values s1 5 15 km and
s2 5 2.5 km represent a legitimate choice with g 5
0.29.

It is important to realize that the splitting of the to-
pography into two contributions is the key to attaining
a rapid vertical decay of the small-scale topographic
features. For instance, the vertical decay of the SLEVE
setting with g 5 0.29 alluded to above cannot be
matched by any hybrid formulation. More specifically,
using s 5 2.5 km with the hybrid setting (11) leads to
g 5 20.2, thus representing a noninvertible coordinate
setting. The inability of the hybrid formulation to attain
a rapid vertical decay is not surprising: With a topo-
graphic height of h 5 3 km, it is definitively not possible
to prescribe quasi-horizontal computational levels at a
height of 2.5 km. Only the splitting of the topography
allows choosing a small s2 value that is comparable or
smaller than the total mountain height. This is indeed
why a combination with s1 k s2 is so advantageous.

3. Idealized advection test

a. Overview

To quantify coordinate transformation errors, a simple
two-dimensional advection test is used. Its main features
are sketched in Fig. 4. To mimic the effects of complex
topography, we employ an obstacle with a finescale sub-
structure (the wavelike features). The wavelength of this
structure is typically set to eight-gridpoint increments,
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FIG. 4. Vertical cross section of the idealized two-dimensional advection test. The topography is located
entirely within a stagnant pool of air, while there is a uniform horizontal velocity aloft. The analytical solution
of the advected anomaly is shown at three instances.

that is, to a scale that is usually retained in digital to-
pography fields used in weather prediction and climate
models.

The topographic obstacle is submerged within a stag-
nant air mass, but aloft there is a uniform and purely
horizontal flow directed from left to right. This upper-
level flow is separated from the stagnant low-level pool
by a shear layer. The situation thus corresponds to the
not uncommon meteorological condition of a low-level
blocked air mass with submerged topography. The up-
per-level flow represents plain horizontal and linear ad-
vection, but in the presence of coordinate deformations
as implied by the underlying topography.

To test the performance of various schemes, a simple
scalar anomaly is initialized upstream of the topography
and advected by the flow. The transport of the anomaly
field r is described in conservative flux form by

]r/]t 1 = · (vr) 5 0, (22)

where v 5 (u, y, w) 5 (u(z), 0, 0) is the specified velocity
vector. On a regular grid, the advection is along the
coordinate surfaces. On a terrain-following computa-
tional mesh, however, the flow becomes multidimen-
sional. In two dimensions, the transformed equation
reads

] ] ]
21 21 21(J r) 1 (J ur) 1 (J Wr) 5 0, (23)

]t ]X ]Z

where W 5 DZ/Dt is the vertical velocity expressed in
the new coordinate framework. The prescribed wind
profile u(z) can be expressed as

(u, w) 5 (2]f/]z, 0)

using a streamfunction f 5 f(z). Transformation into
computational space then yields

]f ]f
(u, W ) 5 J 2 , . (24)1 2]Z ]X

Introducing (24) into (23), one obtains

] ] ]f ] ]f
21(J r) 1 2 r 1 r 5 0. (25)1 2 1 2]t ]X ]Z ]Z ]X

Choosing (25) rather than (23) as the governing equa-
tion for the numerical implementation has two important
advantages. First, (25) allows implementing the non-
divergence property of the specified flow field on the
level of the numerical approximation. Second, in (25)
the metric terms disappear in the flux-divergence com-
putation, such that the cancellation problems addressed
by KSF are avoided. In general, however, (25) is not
amenable, as the streamfunction may not be available,
or as the wind field may be divergent.

For all tests we use a computational domain that is
confined above by a rigid lid at H 5 25 km and that is
periodic in the x direction. The anomaly is initialized
at t1 and advected from left to right. Diagrams will be
shown at three times corresponding to positions of the
anomaly upstream, over and downstream of the obstacle
(see Fig. 4).

The standard experiments will be conducted using
explicit time stepping with centered finite differences
in space and time (leapfrog) on a staggered Arakawa C
grid. Other schemes to be considered include higher-
order versions of the leapfrog scheme, the upstream
scheme, and two versions of the Smolarkiewicz scheme
(Smolarkiewicz 1984). Unless stated otherwise, the nu-
merical experiments are conducted in the absence of
explicit diffusion.

Tests are conducted using the four different coordi-
nates shown in Fig. 5. The first mesh is obtained with
a sigma coordinate (Fig. 5a). The second mesh is a
hybridlike setting (Fig. 5b), based upon (11) with a scale
height of s 5 8 km. This coordinate is characterized by
a more rapid decay of the terrain features with height.
The third mesh (Fig. 5c) is a version of the SLEVE
coordinate (14). It requires splitting the topography ac-
cording to (13) into larger-scale and smaller-scale con-
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FIG. 5. Vertical coordinates used for the idealized advection test:
(a) sigma coordinate, (b) hybrid coordinate with a scale height of s
5 8 km, (c) SLEVE coordinate using a scale-dependent decay of
terrain features (s1 5 15 km for large- and s2 5 2.5 km for small-
scale features, respectively), and (d) reference grid without topog-
raphy. The diagrams show the lowermost 15 km of the computational
domain with a depth of H 5 25 km.

tributions (see details in next subsection). For the two
scale heights, we use s1 5 15 km and s2 5 2.5 km. The
resulting mesh (Fig. 5c) has a much smoother structure
at upper levels. It is comparable to the hybrid coordinate
(Fig. 5b) in the sense that the maximum displacement
of the coordinate surfaces from their upstream level are
almost identical (e.g., the maximum displacement for
both these coordinates is ;500 m at a height of 15 km).

As a reference, an integration in the absence of topog-
raphy is also conducted (Fig. 5d). This integration will
allow distinguishing between the regular-grid truncation
error of the finite-difference scheme and the errors as-
sociated with coordinate transformations.

b. Detailed specification of the advection test

We consider a computational domain with a length
of 300 km and a depth of 25 km. The topography h(x)
is specified as the product of a large-scale mountain
h*(x) of halfwidth a, and a small-scale wavelike per-
turbation of wavelength l; that is,

px
2h(x) 5 cos h*(x), (26a)1 2l

where


px

2h cos for |x| # ao 1 2 2ah*(x) 5 (26b)
0 for |x| $ a

and where ho denotes the maximum height of the ob-
stacle. In all examples we use ho 5 3 km, a 5 25 km,
and l 5 8 km. For the formulation with the new co-
ordinate, the topography is split into larger-scale and
smaller-scale contributions; see (13). To this end, we
choose for the larger-scale contribution

1
h (x) 5 h*(x). (27)1 2

This implies that the two contributions have the same
maximum amplitude of 1.5 km.

The discretization uses an Arakawa C grid. All nu-
merical operations are coded in conservative flux form.
An Asselin filter was implemented, but is not activated
for the tests presented. The height z of the coordinate
surfaces is discretized from (14) at the W points of the
grid, using the respective definitions for the three co-
ordinate systems considered, that is, (15), (16), and (17).
The Jacobian is then defined at the mass points of the
grid. The sheared wind profile is specified as

1 for z # z2 p z 2 z12u(z) 5 u sin for z # z # z (28)o 1 21 22 z 2 z2 1
0 for z # z 1

with uo 5 10 m s21, z1 5 4 km, and z2 5 5 km. The
wind field is defined by means of a streamfunction

z

f(z) 5 2 u(z) dz (29)E
0

and implemented according to (25). We define the stream-
function at doubly staggered locations fi11/2,k11/2, and its
derivatives (]f/]Z)i11/2,k and (]f/]X) i,k11/2 at staggered
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locations using centered finite differences of second-
order accuracy.

The anomaly is assigned the shape


pr 2cos for r # 1r(x, z) 5 r o 1 22 with

0 else

1/22 2x 2 x z 2 zo or 5 1 (30)1 2 1 2[ ]A Ax z

and initialized at time t1 5 0 at location (xo, zo) 5 (250
km, 9 km) with amplitude ro 5 1 and halfwidths Ax 5
25 km, Az 5 3 km. At time t2 5 2500 s, the anomaly
is centered right over the mountain and the integrations
are terminated at t3 5 5000 s.

Unless stated otherwise, the discretization involves
300 3 50 grid points with grid increments of Dx 5 1
km and DZ 5 500 m. The time step is Dt 5 25 s yielding
an advective Courant number of ax 5 uDt/Dx 5 0.25
in the horizontal direction. The maximum Courant num-
bers az 5 | WDt/DZ | in the vertical direction amount
to 0.47, 0.34, 0.12, and 0 for the four coordinates con-
sidered, respectively (cf. Fig. 6).

c. Results for centered differencing

We start by discussing the results using centered finite
differences in space and time (leapfrog). The numerical
solutions and the error fields for the four coordinates
systems of Fig. 5 are displayed in Fig. 6. The top panels
of Fig. 6 are for the sigma coordinate. As the anomaly
is located over the obstacle, substantial distortions as
well as spurious smaller-scale features are evident. The
error field valid at t3 (Fig. 5b) shows a smooth error
structure downstream, with a maximum amplitude cor-
responding to between 217% and 116%. Upstream of
the obstacle, the error field has a much finer scale. These
characteristics are consistent with the well-known phase
errors of centered schemes (e.g., Durran 1998). In par-
ticular, the finescale errors upstream of the obstacle re-
sult from negative group velocities associated with
small-scale waves (numerical dispersion).

Using the hybridlike coordinate in Figs. 6c,d sub-
stantially reduces the numerical errors. Maximum errors
are now between 26% and 14%. Furthermore, the error
notably decreases over the depth of the anomaly as a
function of height, in response to the strong vertical
gradient in the coordinate deformation.

With the SLEVE coordinate, the error is reduced to
;2% (see Figs. 6e,f). The error field is almost identical
to that of the reference solution in the absence of to-
pography (cf. Figs. 6g,h). Thus, for this coordinate the
error is dominated by the regular truncation error of the
scheme, while for the sigma and hybrid coordinate it is
dominated by transformation errors associated with the

heavily distorted grid. A summary of the error measures
can be found in Table 1.

The large errors resulting from the sigma and hybrid
coordinates are not surprising. For illustration, Fig. 7
displays the analytical solution in computational space
(full lines), along with contours of constant z height
(dashed lines). This display serves to illustrate the strong
distortions that occur in computational space. The mag-
nitude of the errors in the different panels of Fig. 6
seems approximately proportional to the distortion of
the computational grid.

d. Results for fourth-order centered schemes

Next consideration is given to centered differences of
fourth-order accuracy using the sigma coordinate (as in
Figs. 6a,b). The results (Fig. 8) show that increasing the
order of accuracy has a very pronounced and highly
beneficial impact upon the quality of the solutions. The
positive impact of fourth-order horizontal advection is
of practical interest, noting that many of today’s nu-
merical weather prediction models are accurate to only
second order. Figure 8 suggests that a careful reconsid-
eration of such choices might be appropriate, taking into
account the presence of terrain-following grids. Appar-
ently, the beneficial aspects of higher-order horizontal
advection are not merely restricted to reducing the am-
plitude and phase errors associated with small-scale
anomalies, but also make the horizontal advection of
large-scale anomalies less sensitive to the presence of
small-scale features in the computational grid. In this
context it is worth noting that most of the positive im-
pact seen in Fig. 8 is due to the use of fourth-order
accuracy in the horizontal direction, while the use of
fourth-order accuracy in the vertical has little additional
impact. This suggests that the poor behavior seen in
Figs. 6a,b is primarily due to the lack of horizontal
(rather than vertical) resolution/accuracy, a result that
will be confirmed in section 3f below.

e. Results for forward-in-time schemes

The results for the first-order upstream scheme using
forward time stepping are shown in Fig. 9. This scheme
is much more diffusive than the leapfrog scheme con-
sidered above. Even the reference solution in the ab-
sence of coordinate transformations (Figs. 9g,h) is char-
acterized by an amplitude reduction of 22%. The co-
ordinate transformations in the upper panels of Fig. 9
have a devastating effect upon the performance of the
scheme. With the sigma coordinate, the amplitude of
the anomaly is reduced by almost 72%!

Additional tests were performed for two versions of
the second-order multidimensional positive definite ad-
vection transport algorithm (MPDATA) scheme (Smo-
larkiewicz 1984). This scheme is popular due to its small
phase errors and positive-definite treatment, and is par-
ticularly well suited for the advection of chemical con-
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FIG. 6. Numerical solutions to the advection test using centered differences and a horizontal Courant number of a 5 0.25. (a),(c),(e),(g) The
advected anomalies at three consecutive times (t1 5 0, t2 5 2500 s, t3 5 5000 s) and (b),(d),(f ),(h) the error field at t3 (numerical minus analytical
field). The solutions are from numerical experiments using (a),(b) the sigma coordinate, (c),(d) a hybrid coordinate, (e),(f ) the SLEVE coordinate,
and (g),(h) a regular grid. The initial amplitude of the anomaly is 1; the contour interval in the left-hand panels is 0.1, and that in the right-
hand panels is 0.01 (zero contour suppressed, negative contours dashed). The coordinate systems are shown in Fig. 5.

stituents and water species. We consider both the non-
linear version of the scheme as described in Smolar-
kiewicz (1984), and a version using a linearized anti-
diffusive correction. Results are summarized in Table
1. Despite the excellent performance of the scheme in
the absence of grid transformations, the deteriorating
effects of coordinate transformations are evident.

The results of these tests can be summarized as fol-
lows: Schemes with implicit diffusion suffer particu-
larly large coordinate transformation errors. Diffusion
spreads out the solution in computational space, rap-
idly broadens the initial anomaly, and thereby makes
the scheme more susceptible to coordinate transfor-
mations.
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TABLE 1. Error measures of numerical solutions to the standard version of the advection test for five numerical schemes and four vertical
coordinate formulations. The upper line for each coordinate entry lists the extremes of the numerical solution (analytical values are 0 and
1), the lower line shows the maximum errors with respect to the analytical reference solution.

Leapfrog

min max

Leapfrog,
fourth order

min max

Upstream

min max

MPDATA

min max

MPDATA linearized

min max

Sigma

Hybrid

SLEVE

No topography

r
rnum 2 rana

r
rnum 2 rana

r
rnum 2 rana

r
rnum 2 rana

20.168
20.174
20.050
20.058
20.023
20.024
20.023
20.023

0.953
0.162
0.989
0.044
0.985
0.021
0.985
0.021

20.058
20.057
20.023
20.023
20.002
20.002
20.002
20.002

1.001
0.052
0.982
0.019
0.984
0.002
0.984
0.002

0.000
20.700

0.000
20.586

0.000
20.376

0.000
20.220

0.284
0.213
0.408
0.185
0.619
0.106
0.762
0.141

0.000
20.396

0.000
20.187

0.000
20.065

0.000
20.025

0.605
0.206
0.836
0.133
0.960
0.061
0.979
0.034

20.076
20.269
20.014
20.085
20.012
20.012
20.012
20.012

0.736
0.179
0.928
0.084
0.981
0.013
0.982
0.011

f. Sensitivity to horizontal and vertical resolution

Here we investigate how the solution using centered
differencing depends upon horizontal and vertical res-
olutions. When changing the vertical resolution, the
same time step (and thus different vertical Courant num-
bers) as in the standard case is used. When increasing
the horizontal resolution, the time step Dt is reduced
such as to maintain the horizontal Courant number at a
value of 0.25. When decreasing the horizontal resolution
beyond that of the standard setting, we maintain the
time step, in order to retain the vertical Courant number.

Figure 10 shows the results for the standard test with
sigma coordinates (cf. Figs. 6a,b), using four different
horizontal resolutions. It can be observed that the trans-
formation errors are highly sensitive. In Fig. 6, we used
a horizontal resolution of Dx 5 1000 m, such that the
small-scale topographic wavelength corresponds to l 5
8Dx (for reference, these result are repeated in Figs.
10c,d with a different contour interval). Doubling the
resolution to Dx 5 500 m (l 5 16Dx; see Figs. 10g,h)
is sufficient to reduce the maximum error from 21% to
3.6%. On the other hand, reducing the resolution to Dx
5 1500 m (l 5 5.3Dx; see Figs. 10a,b) leads to dev-
astating errors with a maximum amplitude of 78%. This
result is alarming, as many numerical weather prediction
models include appreciable topographic amplitudes in
the respective spectral wavelength ranges.

Figure 11 shows the results with three different ver-
tical resolutions. Increasing the number of grid points
in the vertical does not improve the behavior of the
scheme. Indeed, the error field with increased vertical
resolution (Dz 5 250 m; see Figs. 11e,f) is almost iden-
tical to the standard experiment (Dz 5 500; see Figs.
11c,d). This is further supported by an additional ex-
periment with lower vertical resolution (Dz 5 1000 m;
see Figs. 11a,b), which produces an error field with a
slightly reduced amplitude (albeit the anomaly is only
poorly resolved at this resolution). This result appears
consistent with the experience of operational weather
services, who often use their mesoscale NWP models
at rather low vertical resolution, and apparently find it
more beneficial to invest available computing resources

in refining the numerical mesh in the horizontal rather
than in the vertical direction.

A more comprehensive analysis of the resolution de-
pendency of the numerical error and its sensitivity with
respect to the coordinate formulation under consideration
is presented in Fig. 12. The error is defined here as

E 5 max |r 2 r |, (31)num ana
x,Z

where rnum and rana denote numerical and analytical so-
lutions at time t3, respectively. The results for three
schemes are summarized in Fig. 12 as a function of
horizontal resolution (displayed in dimensionless form
as l/Dx). We first discuss the results for the sigma-
coordinate simulations (full symbols). For all schemes
considered, convergence is evident in good agreement
with the theoretical expectations according to the
scheme’s order of accuracy (given by the slope of the
dashed lines). For short wavelengths around 5Dx, the
errors have a magnitude comparable to that of the anom-
aly. The three schemes differ substantially in their be-
havior. Taking an error level of E 5 0.1 as a threshold,
it is exceeded for wavelengths smaller than ;13Dx
(MPDATA), ;10D x (second-order centered), and
;7Dx (fourth-order centered), respectively. The simu-
lations using the SLEVE coordinate (open symbols)
show a reduction of the error level by a factor ;10. For
all schemes, this reduction applies to a surprisingly wide
range of scales, and there is a striking difference even
at wavelengths around 20Dx. As the error induced by
the grid transformation heavily depends upon horizontal
resolution (see section 4), the SLEVE error curve does
not exhibit a regular convergence according to the ac-
curacy of the scheme, but rather the error level ap-
proaches that of the sigma coordinate for well-resolved
terrain features.

In summary, these results show that the transforma-
tion error using the sigma coordinate is most pro-
nounced at horizontal wavelengths around 5 and 10Dx,
but its relative magnitude is still substantial at 20Dx.
The insensitivity of the results with respect to vertical
resolution demonstrates that the main reason for the
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FIG. 7. As in Fig. 6 but showing the structure of the analytical
solution at times t1, t2, and t3 (full lines), along with the surfaces of
constant height z (dashed lines) in computational (x, Z ) space.

error is due to rapid changes of the grid structure in the
direction of the flow.

4. Theoretical analysis of truncation error

In this section we carry out a theoretical analysis of
the truncation error of the advection equation in the
presence of arbitrary coordinate transformations. To
simplify the situation, consideration is restricted to the
one-dimensional advection equation in conservative
flux form:

]r ](ur)
1 5 0, (32)

]t ]x

with an arbitrary flow field u 5 u(x) . 0. The performance
of the first-order upstream and the second-order centered
schemes will be investigated in the presence of an arbitrary
coordinate transformation X 5 X(x). The transformed
equation can be written in two ways, either as

]r ](ur)
1 J 5 0, (33)

]t ]X

or more generally as
21]r ](J Ur)

1 J 5 0, (34)
]t ]X

where J 5 ]X/]x is the Jacobian of the transformation
and where U 5 DX/Dt 5 Ju is the transformed velocity.
Multidimensional numerical implementations usually
utilize (34). However, for the sake of simplicity and in
order to avoid complicating effects associated with the
definition of the metric terms (cf. KSF), the subsequent
analysis is based on (33).

Since we are interested in the spatial truncation error,
(33) will be brought into the form

]r
1 FD 5 E, (35)

]t

where FD is a finite difference approximation of the
respective term and E the spatial truncation error. The
error term will be derived in the usual way using Taylor
series expansions. We will then attempt to split the error
term into

E 5 E 1 E ,reg trans (36)

where the two terms refer to the truncation error as-
sociated with finite differencing on a regular grid and
the contribution arising from the coordinate transfor-
mation, respectively.

a. Upstream differencing

In the case of the upstream scheme on a staggered
Arakawa C grid, the approximation reads as

JiFD 5 (F 2 F ), (37a)i i11/2 i21/2DX

with the upstream fluxes given by

F 5 u r .i11/2 i11/2 i (37b)

The application of Taylor series expansions delivers the
error term:

DX ] ]r
2E 5 J u 1 O(DX ). (38)u 1 22 ]X ]X

This equation is formulated in computational space. The
transformation back to physical space using ]/]X 5
J21]/]x and DX 5 JDx is straightforward and yields
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FIG. 8. As in Figs. 6a,b but using fourth-order centered differences.

Dx ] ]r
21 2E 5 J uJ 1 O(Dx ). (39)u 1 22 ]x ]x

In this form, the error term can readily be interpreted.
Its amplitude is determined by variations of uJ21(]r/
]x), and this implies that variations of the Jacobian J21

play a similar role as those of u or ]r/]x. The leading
error term (39) is now split following (36) into

Dx ] ]r
2E 5 u 1 O(Dx ), and (40a)u,reg 1 22 ]x ]x

Dx ]r ]J
21 2E 5 2 u J 1 O(Dx ). (40b)u,trans 2 ]x ]x

Equation (40a) represents the standard error contri-
bution associated with upstream differencing on a reg-
ular grid, but here Dx 5 J21DX represents the local
value of the grid spacing. Under conditions of uniform
flow it simplifies to the error term of linear upstream
differencing (see e.g., Durran 1998, p. 39). Equation
(40b) represents the contribution associated with grid
transformations. It will further be discussed in section
4c below.

b. Centered differencing

In the case of second-order centered differences, (37a)
is used with

1
F 5 u (r 1 r ). (41)i11/2 i11/2 i i112

The application of Taylor series expansions delivers,
after some tedious calculations, the error term:

2 2 3DX ] ] r ] (ur)
3E 5 J 3 u 1 1 O(DX ). (42)c 2 31 2[ ]24 ]X ]X ]X

Transformation back to physical space is quite cum-
bersome. We thus restrict attention to the case ]u/]x 5
0, whereupon

2 3DX ] r
3E 5 J u 1 O(DX ). (43)c 36 ]X

Transformation back to physical space delivers

32Dx ]
3 21 3E 5 uJ J r 1 O(Dx ). (44)c 1 26 ]x

The error may be split according to (36) into

2 3Dx ] r
3E 5 u 1 O(Dx ), and (45a)c,reg 36 ]x

2 2 22 22 2Dx ] J ]r ]J ] r
2 3E 5 J u 1 3 1 O(Dx ).c,trans 2 2[ ]12 ]x ]x ]x ]x

(45b)

In the absence of grid transformations (J [ 1), the error
term again reduces to its classical form.

c. Discussion

Most of the literature on truncation errors of finite-
difference approximations restricts attention to simpli-
fied cases of uniform flow in the absence of coordinate
transformations. Such results may be misleading, as this
procedure ignores the error contributions due to defor-
mations of the computational mesh. Indeed, the most
important aspect of the above results is that the trans-
formation error Etrans has the same leading order as the
regular truncation error Ereg valid in the presence of a
uniform grid. Whether the Etrans contribution is relevant
depends upon the scales of the flow anomalies and those
of the coordinate transformation. Qualitative interpre-
tation of (40) and (45) suggests that the regular-grid
contribution to the truncation error will dominate for
small-scale flow anomalies, as the coefficient of the
leading error term is directly determined by variations
of the transported field. However, for larger-scale flow
anomalies, the total truncation error will be dominated
by transformation errors, as its leading error term has
a coefficient that is proportional to horizontal derivatives
of the Jacobian. This implies that small-scale grid de-
formations may be effective in disturbing the transport
of large-scale anomalies. This interpretation is consis-
tent with the results of the idealized advection test in
section 3.
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FIG. 9. As in Fig. 6 but for the first-order upstream scheme. Contour interval in the right-hand panels is 0.025.

5. Examples using a fully nonhydrostatic
forecasting model

In order to assess the impact of the new coordinate
formulation in a NWP context, both idealized and real-
case numerical experiments are conducted using the Ca-
nadian Mesoscale Compressible Community (MC2)
model. This model is based on the nonhydrostatic com-
pressible set of equations and is thus suited for the sim-
ulation of atmospheric flows on a wide range of scales.

The prognostic equations for momentum, pressure per-
turbation, temperature, and specific humidity are dis-
cretized on a staggered Arakawa C grid using a semi-
implicit, semi-Lagrangian scheme (Tanguay et al. 1990;
Benoit et al. 1997). For the solution of the semi-implicit
time step, a hydrostatically balanced isothermal refer-
ence state is introduced. The model has recently been
supplemented with a new adiabatic kernel (Thomas et
al. 1998). As a result of using very fast numerical tech-
niques, the MC2 is one of the few models that allows
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FIG. 10. Solutions using the sigma coordinate with various horizontal resolutions: (a),(b) Dx 5 1500 m, (c),(d) Dx 5 1000 m as in Figs.
6a,b, (e),(f ) Dx 5 750 m, and (g),(h) Dx 5 500 m. Conventions are the same as in Fig. 6 except for using a contour interval of 0.02 in the
right-hand panels.

conducting high-resolution simulations at convection-
resolving resolution in real time on currently available
computers. The MC2 is equipped with a sophisticated
parameterization package and has extensively been test-
ed for quantitative precipitation forecasting purposes,
including the simulation of heavy events (see Benoit et
al. 2000, 2002).

a. Implementation of the new coordinate

The original version of the MC2 code uses the sigma
coordinate (6), and the metric terms (18) are hard-coded.
In order to generalize the formulation for arbitrary co-
ordinate transformations, the code was revised such that
the metric terms are stored as a function of the three-
dimensional grid. To this end, the height z of the com-



2474 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

FIG. 11. Solutions using the sigma coordinate with various vertical resolutions: (a),(b) DZ 5 1000 m, (c),(d) DZ 5 500 m as in Figs.
6a,b, and (e),(f ) DZ 5 250 m. Conventions are as in Fig. 6 except for using a contour interval of 0.02 in the right-hand panels.

FIG. 12. Errors of the idealized advection test as a function of horizontal resolution for simulations using sigma (filled symbols) and
SLEVE coordinates (open symbols). The results pertain to time t 5 t3 of the test (see Fig. 4). The horizontal resolution is given in dimensionless
units of l/Dx. Results are shown for the second-order and fourth-order leapfrog schemes and the linearized version of the second-order
MPDATA scheme. The dashed lines depict the slopes according to second- and fourth-order convergence rates, respectively.
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TABLE 2. Settings for the simulations in Fig. 13.

Figs. 13a,c,e Figs. 13b,d,f

N (s21)
U (m s21)
Dx (m)
Dt (s)
To (K)
po (hPa)

0.01
10

500
8

288
1000

0.018 71
18.71

1000
5.34

273.16
1000

putational levels is computed using (14) and discretized
as described in section 3d. All metric terms are then
computed from this field using centered finite differ-
ences on the staggered grid. The impacts of these chang-
es in terms of execution time and memory requirements
are small.

Implementation of the new coordinate (14) requires
the splitting of the terrain h into its scale-dependent
contributions h1 and h2 following (13). To this end, the
large-scale contribution h1 is computed from h by mul-
tiple applications of a simple second-order Laplace filter.
In our case the filter was applied 100 times, which is
sufficient to remove 98% or more of the small-scale
variations with wavelengths smaller than 15Dx. In order
to remove the small-scale variations along the bound-
aries, we have extended h by one grid point in each
direction, such that for each application of the filter the
values outside the boundary are taken from inside the
boundary (in one dimension; this is, hi50 :5 hi52, etc.).
This ensures that h1 becomes smooth over the whole
computational domain. The small-scale contribution h2

is finally obtained as h2 5 h 2 h1.

b. Dry flow past idealized topography

Here we present results from an idealized experiment
of stably stratified, dry flow impinging upon a two-
dimensional mountain ridge. The upstream profile is
defined by constant values of the Brunt–Väisälä fre-
quency N and the velocity U in the x direction, together
with the upstream surface temperature To and pressure
po. The mountain ridge is assigned a bell-shaped struc-
ture with superposed small-scale variations:

2x px
2h(x) 5 h exp 2 cos , (46)o 1 2 1 2[ ]a l

where ho 5 250 m, a 5 5 km, and l 5 4 km. The
gravity waves forced by this terrain have two domi-
nating spectral components: a larger-scale hydrostatic
wave that is characterized by deep vertical propagation,
and smaller-scale waves generated by the cosine-shaped
terrain variations and characterized by rapid decay with
height due to nonhydrostatic effects.

Assuming a fixed ratio a/l, the adiabatic and inviscid
response in the absence of background rotation is gov-
erned by two dimensionless parameters. These are the
dimensionless mountain height Nho/U and the dimen-
sionless mountain width Na/U. Thus, settings with a
constant ratio N/U are dynamically similar, that is, differ
only by some scaling.

Simulations are conducted in a model domain with
an extent of L 5 200 km times H 5 19.5 km. The
vertical discretization of the domain is performed on 65
equally spaced layers. A Rayleigh-damping layer with
a depth of 30 layers is used to minimize the reflection
of vertically propagating waves at the upper boundary.
The integrations are carried out until a quasi-steady state

is reached and are performed in the absence of any
physical parameterization and explicit diffusion. Only
the central portion of the domain will be displayed.

In order to explore the sensitivity of the response with
respect to the numerical resolution and the choice of the
vertical coordinate, a comprehensive set of numerical
simulations has been conducted for N/U 5 1023 m21.
To provide an overview of the wide range of results,
two settings are discussed in more details. These employ
values of N 5 0.01 s21 and N 5 0.01871 s21 (see Table
2 for additional settings) and are shown in the left- and
right-hand panels of Fig. 13, respectively. Both simu-
lations use a hydrostatically balanced isothermal ref-
erence state. This is relevant to the comparison, as the
upstream profile of the second (but not the first) setting
coincides with the reference state.

For both settings, the sigma coordinate given by (6)
is compared against a hybridlike coordinate (9) with a
scale height of s 5 3 km (g 5 0.92), and the SLEVE
coordinate (14) with s1 5 5 km and s2 5 2 km (g 5
0.90). A linear solution based on Fourier decomposition
serves as a reference (see Lüthi et al. 1989) and is shown
in Fig. 13g.

The simulation with N 5 0.01 s21 (left-hand panels
of Fig. 13) uses a comparatively fine horizontal reso-
lution, such that the small-scale wavelike perturbation
of the mountain is associated with a wavelength of l
5 8Dx. The results using the sigma coordinate (Fig.
13a) show a dramatically distorted unphysical wave pat-
tern at upper levels. The error is evident from compar-
ison against the linear solution (Fig. 13g). The solutions
using the hybridlike coordinate (Fig. 13c) and the new
coordinate (Fig. 13e) show a considerable reduction of
these errors. In particular, consistent with theoretical
considerations and the linear solution, only the larger-
scale mountain waves propagate, while the smaller-scale
waves rapidly decay with height.

The simulation in the right-hand panels of Fig. 13
uses a coarser horizontal resolution (l 5 4Dx) and a
stratification that matches that of the isothermal refer-
ence state of the numerical formulation. Despite the
coarser resolution, the standard simulation using sigma
coordinates (Fig. 13b) is very successful in comparison
to Fig. 13a. The improvements from the hybrid and
SLEVE coordinates are quite visible but comparatively
small (Figs. 13d,f).

Further analysis demonstrates that the finescale errors
seen in Figs. 13a,c are primarily due to the differing
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FIG. 13. Simulations of idealized flow past topography based on dynamically equivalent settings with (a),(c),(e) N 5 0.01 s21 and (b),(d),(f )
N 5 0.01871 s21 (see Table 2 and text for details). Shown are contours of steady-state vertical velocity for numerical solutions using the
(a),(b) sigma coordinates, (c),(d) hybrid coordinates, (e),(f ) SLEVE coordinates, and (g) for an analytical solution. The contour intervals in
the left- and right-hand panels are 0.05 and 0.09355 m s21, respectively.



OCTOBER 2002 2477S C H Ä R E T A L .

stratification of the upstream profile on the one hand,
and the reference state used for the semi-implicit time
step on the other hand. This is consistent with Pinty et
al. (1995), who have detected the importance of the
reference state for simulations of gravity wave propa-
gation. However, Pinty et al. restrict attention to com-
paratively well-resolved cases, where the effect is less
pronounced. More recently, KSF have isolated the true
source of such numerical errors as being related to in-
consistencies between vertical and horizontal advection.

The flow examples in Fig. 13 thus illustrate that the
improvement that can be expected from the SLEVE
coordinate will vary greatly from case to case and from
model to model. It is relevant in this context that the
example considered is based on a heavily simplified flow
in the absence of parameterized physics and model dif-
fusion, and these latter factors may represent additional
sources of small-scale errors.

c. Real-case numerical simulations

Next we consider a real-case numerical experiment
motivated by real-time operations of the MC2 during
the field phase of the Mesoscale Alpine Programme
(MAP; see Bougeault et al. 2001). During this project,
the MC2 model was used to produce daily 27-h forecasts
with a convection-resolving horizontal grid spacing of
3 km, using a computational mesh with 350 3 300 3
50 grid points covering the entire Alps. A detailed de-
scription of the model’s setup can be found in Benoit
et al. (2002).

The setup of the MC2 for the following experiment
is identical to that used during the MAP field phase,
except for the use of a digital topography file with higher
effective resolution. The currently employed prefiltering
of the topography completely removes the shortest
wavelength represented, but the smoothing is weaker
than that applied during the MAP operations (Benoit et
al. 2002) and that typically used in operational NWP
models (e.g., SMAP). The comparatively weak filtering
is selected to amplify the role of poorly resolved scales,
and to demonstrate the ability of the new coordinate to
cope with highly complex topography.

The case presented in this section was initialized at
2100 UTC 19 September 1999, and it covers the second
day of the MAP Intensive Observing Period (IOP) 2b.
The weather situation was characterized by strong
southerly flow over the Alps, leading to heavy precip-
itation and foehn winds upstream and downstream, re-
spectively. Related observational activities during MAP
included airborne missions in support of heavy precip-
itation and gravity wave objectives (Bougeault et al.
2001). Figure 14 shows the simulated fields in a cross
section running from west to east across the southern
portion of the Alps. The left-hand panels of Fig. 14
depict results of a MAP-like setup using the sigma co-
ordinates (5), while results with the SLEVE coordinate
are shown in the right-hand panels. The latter coordinate

transformation is given by (14) with s1 5 10 km and
s2 5 2 km (g 5 0.25). Figures 14a,b depict the com-
putational levels. Results are shown for forecast time
14 h, but the results are qualitatively similar at later
times. The fields presented include the potential tem-
perature and horizontal velocity in the direction of the
cross section (Figs. 14c,d), as well as relative humidity
and equivalent potential temperature (Figs. 14e,f). The
simulation using the sigma formulation (Figs. 14a,c,e)
is characterized by unphysical small-scale variations in
virtually all fields, even at upper levels. Some of the
associated features show a columnar structure aligned
with peaks of the underlying topography, suggesting a
numerical, rather than a physical, origin. As discussed
above, the noise level in this simulation is at least partly
due to the use of a high-resolution topography file. It
is likely that several model components contribute to-
ward amplifying small scales, among them the dynam-
ical core, the advection of moisture and cloud species,
as well as the parameterization package. In the simu-
lation using the new coordinate formulation (Figs.
14b,d,f), a notable fraction of the unphysical noise is
removed as a result of using smoother terrain-following
surfaces.

6. Conclusions

The motivation for this study is the recognition that
terrain-following coordinate transformations in atmo-
spheric models play an important role in determining
the error of numerical algorithms. For analysis, consid-
eration was given to an idealized advection test (section
3), theoretical considerations of the truncation error
(section 4), and idealized and real-case numerical ex-
periments using a nonhydrostatic model (section 5). The
key results of the study are as follow:

• Theoretical considerations demonstrate that the lead-
ing-order truncation error contains not only the well-
known error contributions that occur in the presence
of a uniform grid, but there is an additional error term
of the same order of accuracy that originates from
coordinate transformations. The coefficient of the lat-
ter error term is associated with horizontal derivatives
of the Jacobian. This term dominates in the presence
of large-scale flow anomalies, when the regular-grid
contribution becomes small.

• Results of the idealized advection test confirm the
important role of small-scale terrain features. Using
the classical sigma coordinate, the total error may be
dominated by transformation rather than regular-grid
truncation errors. The former type of error occurs at
scales that are relevant for atmospheric prediction
models. Taking a 10% error level as a threshold, this
level is exceeded for topographic wavelengths smaller
than 7–13Dx, depending upon the scheme under con-
sideration.

• Higher-order (e.g., fourth order) advection schemes



2478 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

FIG. 14. Results of the real-case experiments. Shown is a section across the Alps at 468N with a horizontal extent of ;930
km (running from west to east from the Rhone valley over the Monte Rosa massif, the Alpine foothills in southern Switzerland,
the Po valley in the Veneto area, to the Dinaric Alps in Slovenia). Only the lowermost 15 km of the computational domain
are displayed. (a),(b) Heights of computational surfaces, (c),(d) horizontal velocity along the cross section (m s 21) and contours
of potential temperature (K), and (e),(f ) relative humidity (%) and contours of equivalent potential temperature (K). Left-
and right-hand panels show results obtained with the sigma and SLEVE coordinates, respectively.
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may not only be attractive for the transport of small-
scale anomalies, but they have also a highly beneficial
impact if larger-scale anomalies are advected in the
presence of small-scale coordinate-transformations.

To alleviate the negative effects of coordinate trans-
formations, a new vertical coordinate framework has
been proposed. It is designed to provide a computational
mesh that is much smoother than currently utilized co-
ordinate systems (section 2). The basic idea of this new
coordinate is the use of a scale-dependent vertical decay
of terrain features, such that small-scale variations decay
quickly with height so as to leave the coordinate surfaces
at midtropospheric and higher levels unaffected. The
resulting ‘‘SLEVE’’ coordinate yields substantially
smoother coordinates than are attainable with a hybrid
coordinate. Indeed the splitting of the topography into
two (or more) contributions is the key to yielding such
a smooth terrain-following coordinate.

The new coordinate formulation has a highly bene-
ficial impact:

• Comparisons of the SLEVE coordinate in the context
of the idealized advection test against the performance
of sigma and hybrid coordinates demonstrate that the
use of a smooth computational grid can greatly reduce
the transformation errors and thereby drastically im-
prove the simulation results.

• Idealized and real-case numerical simulations using a
full model demonstrate that the new coordinate frame-
work leads to a better representation of gravity waves
and reduces the noise levels in the free troposphere
and lower stratosphere, although this effect depends
upon the model and setup under consideration.

Currently a study is under way to investigate the be-
havior of the SLEVE coordinate in an operational NWP
context using the Lokal Modell (LM; Doms and Schät-
tler 1999) of the German Weather Service. Preliminary
results (see Leuenberger 2002) demonstrate that smooth
coordinate surfaces indeed help to reduce finescale noise
in wind and moisture fields. Leuenberger also demon-
strates that the impact depends upon the case under
consideration, with particularly evident effects in a case
of parameterized summer convection over complex to-
pography. Further analysis will be needed to corroborate
this result and to isolate the impact in a larger sample
of cases.

When using atmospheric prediction models for real-
case applications, there is the desire to represent the
underlying topography as accurately as possible. Such
a representation does imply some coordinate transfor-
mation errors, and a compromise has to be made be-
tween accepting these errors or reducing the amplitude
of small-scale topographic features. In particular at low
levels, it will not be possible to completely remove the
associated coordinate transformation errors. As long as
they merely affect small-scale atmospheric features
(which are anyway poorly resolved), such errors may

be acceptable. In contrast, however, such errors are un-
acceptable when they affect the larger-scale dynamics
(which is believed to be well represented). As demon-
strated by the theoretical considerations and the ideal-
ized numerical tests of this study, the coordinate trans-
formation errors may sometimes represent the dominant
error source, and they may greatly be reduced by use
of a smooth computational mesh, such as is provided
by the SLEVE coordinate.
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