
1. Introduction

In this paper, a physical discussion of vorticity and
potential vorticity (PV) is presented, with a minimum
of mathematical equations, these being given in an
Appendix. The application of PV thinking to viewing
and understanding the development of mid-latitude
weather systems will then be briefly discussed. A more
theoretical and complete discussion of PV may be
found in Hoskins et al. (1985). Synoptic applications
are given in Hoskins & Berrisford (1988) and numer-
ous recent papers.

2. Vorticity

Vorticity is a measure of the local rotation or spin in the
atmosphere. As illustrated in Figure 1, the vector vor-
ticity gives the direction of the axis of the spin and its
magnitude is twice the local angular velocity about this
axis. The relationship between the absolute vorticity, ú,
and the relative vorticity, ê, may be written:

This says that the absolute spin is equal to the relative
spin plus the rotation of the co-ordinate system, Ω.

In horizontal flow with the velocity described by a
streamfunction ψ, the vertical component of relative
vorticity is ξ = ∇ 2ψ. Thus if ξ is known everywhere and
we have suitable boundary conditions, we can invert
(i.e. solve the equation) to get ψ, and hence the velocity
field, everywhere.

The vorticity equation (equation (A7)) has two genera-
tion terms. The second of these can be simply described
as a horizontal vorticity tendency in the sense of warm
air rising and cold air descending. The effect of the first
term may be intuitively understood through the
sketches in Figure 2. If the motion is such as to stretch
the vorticity vector (Figure 2(a)), then the spin, and
thus the magnitude of the vorticity, is increased (Figure
2(b)). If the motion is such as to tilt the vorticity vector
(Figure 2(c)), then the direction of the spin and the vor-
ticity vector is tilted (Figure 2(d )). These effects are
known as vortex stretching and tilting (or twisting).

3. Quasi-geostrophic (QG) theory

In quasi-geostrophic (QG) theory only the vertical
component of the vorticity equation (equation (A8)) is
explicitly considered. It is also supposed that the Earth’s
rotation dominates: ζ ≅ f. The relevant vorticity equa-
tion (equation (A15)) then contains only stretching and
shrinking of this basic rotation. Two simple examples
are shown in Figure 3. Along with zero vertical motion
at the ground, mid-tropospheric ascent implies stretch-
ing and the creation of absolute vorticity greater than f ,
i.e. cyclonic relative vorticity, in the lower troposphere.
Similarly mid-tropospheric descent implies shrinking
and creation of relative anticyclonic vorticity.
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Figure 1. A vorticity vector and the local rotation in the
atmosphere indicated by the circulation around a cylinder of
air oriented along the vorticity vector.



Consistent with this discussion, synoptic development
can be viewed in terms of the vertical velocity derived
from the so-called QG omega equation (equation
(A20) with equations (A21), (A22) or (A24)), and the
predictive vorticity equation (equation (A15)). This
approach is discussed in Pedder (1997).

An alternative but equivalent approach is to note that
the amount of stretching that has taken place is indi-
cated by the distortion of potential temperature con-
tours, as in Figure 4. This in turn is described by the
thermodynamic energy equation (equation (A16)).
Combining this equation with the vorticity equation
(equation (A15)) gives the conservation equation
(equation (A17)) for QG potential vorticity q (equa-
tions (A18) and (A19)). For a uniform static stability,
resting basic state and constant f , then q = f. At a later
time:

where θ̄(z) is a reference potential temperature and θ'
the departure from this.

The conservation of q then gives:
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Figure 3. Mid-tropospheric ascent and descent shown in (a)
leads to, respectively, the stretching and shrinking of vorticity
and the associated increase and decrease of vorticity and cir-
culation shown in (b). If the initial relative vorticity is zero,
the two situations correspond to cyclonic and anticyclonic sur-
face developments.

Figure 4. The stretching and shrinking of the two cylinders
bounded by the two isentropic (potential temperature) sur-
faces, and hence the change in vorticity and circulation, in
going from A to B, or vice versa, is indicated by the relative
separation of these two surfaces.

Figure 2. The change in vorticity associated with the stretch-
ing and tilting of the vorticity vector. The tendency of the
motion to stretch the vorticity in (a) leads to greater circulation
around a taller, thinner cylinder and larger vorticity shown in
(b). The tendency of the motion to tilt the vorticity in (c) leads
to the same circulation around a tilted cylinder and tilted vor-
ticity shown in (d).
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consistent with points A and B, respectively, in
Figure 4.

The form of the equation for q in terms of the QG
streamfunction (equation (A19)) shows that, given q
everywhere and suitable boundary conditions, the
equation can be inverted to give ψ and hence φ, vg
and θ everywhere. This is analogous to the inversion
of the vorticity in the two-dimensional case (see sec-
tion 2).

4. Full (Rossby–Ertel) potential vorticity

The same ideas can be used without making the QG
approximations. Consider a thin cylinder between two
neighbouring isentropic surfaces, ∆h apart (Figure
5(a)). The quantity:

is conserved where 1–
2ζn is the spin of the cylinder. This

takes account of stretching: ∆h and ζn both increase or
both decrease (Figure 5(b)). It takes account of tilting
because the cylinder tilts with the fluid (Figure 5(c)). It
also takes account of density changes which have been
neglected elsewhere in this discussion for simplicity.

Since |∇θ | = ∆θ/∆h and ∆θ (the difference in potential
temperature between the two isentropic surfaces) is
constant following the motion, then the conservation
of P is equivalent to the conservation of:

where P is the so-called potential vorticity (PV). It is
equivalent to the form given in equation (A27). Thus it
is seen that the adiabatic, frictionless conservation of
PV (equation (A28)) is simply related to conservation
of P and to the ideas discussed above. The mathematical
relationship of QGPV conservation to full PV conser-
vation is not immediate but the physical relationship is
clear.

PV has two basic properties:

(a) Conservation. If the motion is adiabatic and fric-
tionless then PV is conserved moving with the air.

(b) Inversion. Given PV everywhere and suitable
boundary conditions, and assuming that the motion
is balanced in the sense that it is not composed of
fast gravity waves (or acoustic waves), then equa-
tions can be solved to obtain φ, v, θ, w, etc. This is
analogous to the two-dimensional and QGPV cases
discussed above.

We can now think about the PV distribution itself
rather than the behaviour of cylinders between isen-
tropic surfaces, but the results must be the same. Figure
6(a) indicates the situation usually associated with a
positive PV anomaly, i.e. a region in which the PV is
larger than in the surrounding air. Inside the region the
vorticity and static stability (∝ 1/∆h) are both large.
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Figure 5. The cylinder between two isentropic surfaces in (a) is stretched in (b) and tilted in (c). The vorticity normal to the
isentropic surface is increased in (b) and tilted with the cylinder in (c).
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Figure 6. The isentropes and circulation for idealised positive
(a) and negative (b) interior PV anomalies, and for warm (c)
and cold (d) surface temperature anomalies. Also shown is the
sense of the vertical motion if there is a basic flow along the
sections which increases with height. (Adapted from Hoskins,
et al., 1985; Thorpe, 1985; Hoskins & Berrisford, 1988.)



Outside the anomaly, but close to it, the isentropes
must be separated more than they would be if the
anomaly was not present and the vorticity must be
greater than f (i.e. cyclonic). It can also be shown that
if there is a ‘zonal’ wind increasing with height there
will be ascent to the ‘east’ of the anomaly and descent
to the ‘west’. Thus the influence of the anomaly is
apparent in the surrounding air. Figure 6(b) shows a
similar but negative, anticyclonic PV anomaly.

For a uniform PV fluid near a lower boundary with a
warm anomaly (Figure 6(c)) the isentropic separation is
enhanced and this must be associated with cyclonic

motion. Similarly, a cold lower boundary anomaly is
associated with anticyclonic motion (Figure 6(d )).

Figure 7 shows a schematic latitude–height distribution
of two variables θ and PV that are materially conserved
in adiabatic, frictionless motion. An isentropic surface
such as that at θ = 315 K slopes upwards from the lower
troposphere in the tropics to the tropopause in middle
latitudes and then levels off in the stratosphere. PV is
measured in PVU where 1 PVU equals 10–6 m2 K s–1

kg–1. It increases polewards and upwards. Looking
from the subtropical jet to the pole, there is a jump in
PV values typically from 1.5 to 4 PVU at the
tropopause and then a rapid increase with height in the
stratosphere.

In an adiabatic, frictionless atmosphere PV contours
will be advected on any θ-surface. On a θ-surface
crossing the tropopause (e.g. Figure 8(c) below) con-
tours in the range 2–3 may be considered as marking the
boundary between low PV, lower latitude tropospheric
air and high PV, higher latitude stratospheric air.

It is also clear that θ contours will be advected on a PV
surface. A surface at values like PV = 2–3 is particularly
useful because this can be considered to be a dynamical
tropopause poleward of the subtropical jet (e.g. Figure
8(d ) below). On such a map, higher latitude air has rel-
atively low θ and lower latitude air has relatively high
θ. (Note that on the tropopause the latitudinal gradient
of θ is the reverse of that of T.)

Close to the equator PV values are small and do not
usefully define a tropopause. For the southern hemi-
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Figure 7. A schematic latitude–height section from north pole
to equator showing isentropes, PV contours and the
tropopause. The isentropes are drawn lightly every 30 K start-
ing at 270 K, but with the 315 K surface indicated by dashes.
The PV contours are drawn in bold at 0.5, 1, 2, 4, 10 PVU,
where 1 PVU = 10–6 m2 K s–1 kg–1 . The tropopause is indicated
by a line of open circles. (Adapted from Hoskins, 1991.)

Figure 8. Maps derived from ECMWF data for 1200 Z on 19 June 1996 (a) 1000 mb height, (b) 250 mb height, (c) PV on the
315 K isentropic surface, (d) potential temperature on the PV = 2 surface. The region shown is 90º W–60º E, 10º N–80º N with
lines of longitude every 30º and lines of latitude at 30º N and 60º N indicated. The contour intervals are 30 m and 100 m in (a)
and (b) respectively. The contours in (c) are drawn at 0.5, 1, 2, 4, and 8 PVU and marked by 10 times these values. The contours
in (d) are drawn every 10 K up to 350 K but suppressed beyond this because the PV surface becomes vertical near the equator.



sphere the above discussion applies with the same PV
magnitudes but reversed signs.

5. Two examples

In this section PV maps will be shown for two recent
sequences of weather, concentrating on the sector
including the UK. Figures 8(a) and 8(b) show the 1000
mb and 250 mb height fields for 1200 Z on 19 June
1996. The UK was influenced by the northerly flow
associated with a low centred over Scandinavia and also
by a trough associated with a cut-off to the southwest.
Figures 8(c) and 8(d) show the 315 K PV and the 2 PVU
θ maps for this time. Both of these show the general
relationship of height field troughs and cut-off lows
with higher latitude air as indicated by relatively high
PV or low tropopause θ, and height field ridges and
cut-off highs with lower latitude air with relatively low
PV or high tropopause θ. (Note that, if it was drawn in
Figure 8(d), the 315K contour would be identical to the
PV = 2 contour in Figure 8(c).)

The height field maps are often viewed as heavily
smoothed versions of the PV or θ contour maps. On
the latter, as long as the adiabatic assumption is valid,
features are advected with their magnitudes conserved
whereas features on the geopotential maps have no
such property. We can, for example, look at the origin
of the two high PV features influencing the UK on 19
June.

The sequence of daily 315 K PV maps for the period
14–19 June is shown in Figure 9. There are many fea-
tures of interest in these. However, here we concentrate
on a particular feature. The tip of the PV ‘trough’ (high,
cyclonic PV) south of Greenland on 14 June cuts off by
15 June. This cut-off moves only slowly over the next
few days. A further cut-off from the trough is evident
(over Iceland) by 16 June. This second cut-off moves
southeast into Europe while the first cut-off moves
towards the southwest UK by 19 June. There is a clear
picture of the UK being originally dominated by anti-
cyclonic low PV and then influenced by two features
originating from the same North Atlantic trough but
approaching from different directions.

The winter 1995–96 was one of strong blocking in the
Northwest European region. The Scandinavian block-
ing anticyclonic signature is evident in the average 250
mb and 1000 mb heights for the second half of January
1996, as shown in Figure 10. A 16 day sequence of 315
K PV maps in this period is given in Figure 11. It is
clear that a succession of PV ‘ridges’ and ‘troughs’
develop in the baroclinic flow over North America and
amplify over the North Atlantic. As they reach a stag-
nation point in the upstream side of the block, they
break, with anticyclonic, low PV cut-offs to the north
and cyclonic, high PV cut-offs to the south. These act
to invigorate the blocking anticyclonic–cyclonic
dipole. The high PV anomalies tend to all decay in situ,
whereas a portion of the low PV anomaly air appears to
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Figure 9. 315 K PV maps for 14–19 June 1996. The conventions are as in Figure 8(c)

Figure 10. (a) 1000 mb and (b) 250 mb average height fields for 16–31 January 1996. The conventions are as in Figures 8(a)
and 8(b).



be absorbed back into the subtropical region down-
stream of the block.

This PV view of a blocking system emphasises the cru-
cial importance of the upstream weather systems in
maintaining it. The picture obtained is amazingly simi-
lar to that summarised by Berggren et al. (1949).
Similar PV maps have been given by Shutts (1986),
Hoskins et al. (1985) and Hoskins & Sardeshmukh
(1987). Theoretical support for the picture has been
presented by Shutts (1983) and Vautard & Legras
(1988) 

6. Further discussion

The PV maps shown in the two case studies have con-
centrated on a particular level. However, the develop-
ment on any level is influenced by PV features on other
levels, and a more complete description involves them
as well. In particular, strong development usually
involves interaction with the low level θ distribution.
Ahead of a cyclonic PV trough near the tropopause
there will be poleward advection of warm air. If a sig-
nificant warm anomaly at the surface is formed, this too
has its associated cyclonic circulation. To the extent
that the upper and lower cyclonic anomalies are in
phase, then their cyclonic circulations will reinforce.
To the extent that the low-level anomaly remains ahead
of the upper anomaly, then the associated equatorward
flow behind it will act to reinforce the upper PV anom-
aly. This is the process of ‘self-development’.

In the discussion so far it has been assumed that the
atmosphere is adiabatic and frictionless and that PV is

consequently materially conserved. For most extra-
tropical synoptic developments this appears to give a
good first approximation. In Figures 9 and 11, for
example, the extremes were almost conserved.
However, the cut-off high and low PV anomalies in the
block do gradually decay.

The material change of PV is described in equation
(A28). In the free atmosphere the diabatic heating effect
can be very important. Above (strictly in the direction
of the absolute vorticty vector) a region of latent heat
release the PV is decreased and below it the PV is
increased. Thus, the latent heating in a mid-latitude low
pressure system can lead to significant enhancement of
the low level cyclonic circulation, and enhancement of
the upper ridge in the air moving ahead of it. A recent
detailed analysis of this enhancement in a numerical
simulation of an explosive cyclone was given by
Stoelinga (1996). The PV increase above a radiative
cooling maximum generally occurs at a slower rate than
the decrease above a latent heating maximum, and
appears to be responsible for the gradual decay of the
low PV cut-offs in the blocking anticyclone in Figure
10.

Finally, we note another possible use of PV-θ diagnos-
tics which has yet to be explored fully. A map of a
single geopotential contour over many days has been
used by F. Sanders and others to summarise the
weather in a period, and more recently to summarise an
ensemble of forecasts for a certain day (Toft, 1996, pers.
commun.). Since a single PV contour on a θ surface
(or equivalently, θ on PV) has more dynamical and
physical significance it would appear that its use in this
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Figure 11. 315 K PV maps for 16–31 January 1996. Only the 1 PVU and 4 PVU contours are shown, with the latter being
drawn heavier.
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manner would be appropriate. Figure 12 shows such a
summary map for the 315 K PV = 2 contour for the
week 22–28 January 1996. The different behaviour in
different longitudes is readily apparent. There is little
variability from 60° E to 180° E, but significant activity
in the eastern North Pacific with a tendency to produce
transient anticyclonic cut-offs near Alaska. There is a
smaller level of wave activity over North America with
amplification east of the Great Lakes. Over the North
Atlantic the major transient events seen in Figure 11 are
evident with the low PV cut-offs tending to drift
east–southeast across Asia, while the high PV always
extends west–southwest from northern Europe
towards the Azores. The Mediterranean region is dis-
turbed through the period.
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Appendix. Some basic equations in z- and
p-coordinates

A1. Introduction

The equations used here and elsewhere may be consid-
ered in the framework of using z or p as vertical coor-

dinate. In this paper they are discussed in the context of
z-coordinates, but here we show the equations in both
coordinate systems and the transformation from z to p.

A2. The basic equations

The z-coordinate equations with the Boussinesq and
incompressible approximations, and the p-coordinate
equations are given in Table A1. Throughout v is the
horizontal wind vector (u,v,0) and ∇ h is the horizontal
gradient operator (∂/∂x, ∂/∂y, 0).

The z-coordinate equations may be transformed to the
p-coordinate equations by:

These substitutions may be made in any of the
z-coordinate equations to obtain the corresponding
p-coordinate versions.
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Figure 12. The 315 K, PV = 2 contour for each day in the week 22–28 January 1996. The region shown is now the whole north-
ern hemisphere between 10º N and 80º N.

Table A1. Basic equations in z- and p-coordinates (the definitions of R̂, N2 and σ2 are given in equation (A5))

z-coordinates p-coordinates Equations

Variables p  = p̄(z) + p' φ= gz
ρ = ρ̄(z) + ρ' φ= φ̄(p) + φ'
θ = θ̄(z) + θ' θ = θ̄(p) + θ'
φ' = p'/ρ̄
θ0 = typical θ̄

Horizontal (A1/z), (A1/p)
momentum equation

Hydrostatic equation (A2/z), (A2/p)

Continuity equation (A3/z), (A3/p)

Thermodynamic (A4/z), (A4/p)
equation

D
Dt

f
D
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A3. Derived equations in z-coordinates

(a) Vector vorticity equation

The absolute vorticity is:

ú = f k + ∇ × v

where ∇ is the three-dimensional gradient operator:

Therefore:

The vector vorticity equation is:

where u is the three-dimensional wind vector (u,v,w).

The vertical component of absolute vorticity is ζ = f +
ξ where the relative vorticity is given by:

The vertical component of the vorticity equation is:

(b) Geostrophic motion

The geostrophic velocity is:

where the geostrophic streamfunction ψ = φ'/f0 . Then
the geostrophic relative vorticity is:

and:

The thermal wind equations are:

The rate of change following the geostrophic wind is:

(c) Quasi-geostrophic (QG) equations

With the QG approximation the vertical component of
the vorticity equation (equation (A8/z)) becomes:

The QG thermodynamic equation (equation (A4/z)) is:

Eliminating w between equations (A15/z) and (A16/z)
gives:

where the QG Potential Vorticity (QGPV) is:

In terms of the geostrophic streamfunction the QGPV
becomes:

Alternatively, using thermal wind balance (equations
(A12/z) or (A13/z)), the time derivative can be elimi-
nated between equations (A15/z) and (A16/z) to give a
diagnostic equation for vertical velocity:

This is referred to as the omega equation.

Using ∂/∂t of equation (A12/z) for the elimination
gives:

This is the vorticity advection, thermal advection
(VATA) form for F. In equation (A21/z), θ' may be
replaced by θ, and θ'/θ0 can be replaced by T/T0.

B J Hoskins

332

∂
∂

∂
∂

∂
∂x y z

, , .







ζ = − + −










∂
∂

∂
∂

∂
∂

∂
∂

v

z

u

z
f

v

x

u

y
z, , . ( )A6/

D
Dt

g
z

ζ ζ= ⋅ ∇ − × ∇ ′( ) . ( )u k
θ

θ
o

A7/

ξ
∂
∂

∂
∂

= −
v

x

u

y
.

D
Dt

f
v
z

w
x

u
z

w
y

f
w
z

z( ) ( ) . ( )+ = − + + +ξ ∂
∂

∂
∂

∂
∂

∂
∂

ξ ∂
∂

A8/

v g g g A= = −






( , ) , . ( )u v

y x
∂ψ
∂

∂ψ
∂

9

ξ
∂

∂

∂

∂
∂ ψ
∂

∂ ψ
∂

ψg
g g

h A= − = + = ∇
v

x

u

y x y

2

2

2

2

2 10( )

g
f

z
z

θ
θ ∂ψ

∂o
o A11/′ = . ( )

f
u

z
g

y
z

f
v

z
g

x

o
g

o

o
g

o

A 2/

∂

∂ θ
∂θ
∂

∂

∂ θ
∂θ
∂

= − ′

= ′
( )1

f
z

g
zo

g

o
h A13/

∂ξ

∂ θ
θ= ∇ ′2 . ( )

D
t

g g h A= + ⋅ ∇∂
∂

v . ( )14

D f f
w

z
zg g o A15/( ) . ( )+ =ξ

∂
∂

D
g

N w zg
o

A16/
θ

θ′ = − 2 . ( )

D qg A= 0 17( )

q f f
z

g
N z= + + ′







ξ ∂

∂ θ
θg o

o

A18/2 . ( )

q f
x y z

f

N z
zo= + + +











∂ ψ
∂

∂ ψ
∂

∂
∂

∂ψ
∂

2

2

2

2

2

2
. ( )A19/

N w f
w

z
F zo

2 2 2
2

2
∇ + =h A20/

∂
∂

. ( )

F f
z

g
f

v

z
z

= ⋅ ∇

−∇ ⋅ ∇ ′






+

o g h g

h g h
o

o
g A21/

∂
∂

ξ

θ
θ β

∂

∂

( )

. ( )

v

v2



The Sutcliffe approximation is to neglect the β term and
a term that depends on the rotation with height of the
axis of deformation (the dilatation axis):

where:

and s is measured along a θ contour in the direction of
the thermal wind.

A full form for F, analogous to equation (A22) but
equivalent to equation (A21/z,) is the Q-vector form

where

(d) Potential vorticity

The full potential vorticity, often associated with the
names Rossby and Ertel, is obtained by combining the
vector vorticity equation (A7/z) and the thermo-
dynamic energy equation (A4/z) to give:

where the potential vorticity (PV) is given by:

In the presence of diabatic heating θ
.

and momentum
source F:

A3. Derived equations in p-coordinates

All the equations in section A2 in z-coordinates may be
transformed by equation (A5) to give their correspond-
ing p-coordinate form. Here only some of these will be
displayed.

In p-coordinates the hydrostatic and thermal wind rela-
tions can be written in terms of the geostrophic stream-
function and vorticity:

The QG vorticity and thermodynamic equatons are:

Moving with the geostrophic wind there is conserva-
tion of QGPV:

In terms of the geostrophic streamfunction the QGPV
becomes:

The omega equation is:

where:

The Sutcliffe approximation to F takes the same form as
equation (A22) with:

The full Q-vector form is:

where Q is defined as in equation (A25).

In an adiabatic, frictionless atmosphere and not making
the QG approximation, the full PV:

is conserved following the fluid. Diabatic and frictional
changes in PV are again given by equation (A28).
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