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Abstract
Uncertainty inmodel projections of future climate change arises due to internal variability,multiple
possible emission scenarios, and differentmodel responses to anthropogenic forcing. To robustly
quantify uncertainty inmulti-model ensembles, inter-dependencies betweenmodels as well as a
models ability to reproduce observations should be considered. Here, amodel weighting approach,
which accounts for both independence and performance, is applied to European temperature and
precipitation projections from theCMIP5 archive. Two future periods representingmid- and end-
of-century conditions driven by the high-emission scenario RCP8.5 are investigated. To inform
theweighting, six diagnostics based on three observational estimates are used to also account for
uncertainty in the observational record.Ourfindings show thatweighting the ensemble can reduce the
interquartile spread bymore than 20% in some regions, increasing the reliability of projected changes.
Themean temperature change ismost notably impactedby theweighting in theMediterranean,where it
is found tobe 0.35 °Chigher than the unweightedmean in the end-of-century period. For precipitation
the largest differences are found forNorthernEurope,with a relative decrease in precipitationof 2.4%
and3.4% for the two future periods compared to the unweighted case. Based on a perfectmodel test, it is
found thatweighting the ensemble leads to an increase in the investigated skill score for temperature and
precipitationwhileminimizing the probability of overfitting.

1. Introduction

Changes in the climate system due to anthropogenic
greenhouse gas emissions affect society through rising
temperatures and changing precipitation patterns,
among other things (IPCC 2013, WMO 2019). Efforts
are ongoing to limit global mean warming to well
below 2 °C in order to avoid dangerous levels of
climate change (United Nations 2015). On a regional
scale, however, temperature and precipitation changes
can vastly differ from the global average (Seneviratne
et al 2018) and uncertainties are often larger (Hawkins
and Sutton 2009, Deser et al 2012a) . On such scales it
is, therefore, even more important for decision
makers, such as politicians and large infrastructure
providers, to make decisions based on the best
available knowledge.

Efforts are ongoing in the scientific community to
deliver such reliable and actionable information on
relevant temporal and spatial scales, for example,
within the European Climate Prediction system
(EUCP) project (Hewitt and Lowe 2018). The EUCP
aims to combine regional and global climate model
projections from the latest Coupled Model Inter-
comparison Projects CMIP5 (Taylor et al 2012) and
CMIP6 (Eyring et al 2016) with targeted statistical
approaches to reduce uncertainty in multi-model
mean projections of regional climate.

Model projections are affected by a range of uncer-
tainties including emissions scenario uncertainty,
internal variability of the climate system, and model
response uncertainty (Hawkins and Sutton 2009). Sce-
nario uncertainty takes into account different possible
socio-economic developments (vanVuuren et al 2011,
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O’Neill et al 2014) and is as suchmainly determined by
political decisions and technological development.
Internal variability arises from the chaotic behavior of
theweather and can not be reducedwhen investigating
a given region and time period of interest (Hawkins
and Sutton 2009, Deser et al 2012b, Fatichi et al 2016).

Hence, reducing themodel spread is often the only
option to reduce total uncertainty of climate model
projections. Many different approaches have been
used in the past, based on the assumption that the
reliability of amodel in the future can be inferred from
its performance in reproducing historical climate.
These approaches argue that some models may be
more ‘fit for purpose’ for a given application (e.g. vari-
able, region, or lead time) than others (Gleckler et al
2008, Parker 2009, Knutti 2010, Baumberger et al
2017, Eyring et al 2019), and thus deserve to receive
moreweight in themulti-model estimate of change.

In addition, when working with an ‘ensemble of
opportunity’ (Tebaldi and Knutti 2007) such as
CMIP5, the handling of model inter-dependencies
becomes an important question to address. The mod-
els contributing to CMIP5 were not designed to be
independent from each other: developers might have
shared ideas and code, some models might use iden-
tical components, or two models might have been
branched from the same parent (Knutti et al 2013,
Sanderson et al 2015a, Annan and Hargreaves 2017,
Abramowitz et al 2019, Eyring et al 2019). Moreover,
for several models, multiple realizations with slightly
perturbed initial conditions are provided. On the one
hand, such ensembles should not simply be included
in a multi-model estimate, since they represent the
same model, hence artificially increasing the weight of
models withmoremembers. On the other hand, using
only one member per model discards the additional
information provided by these initial condition
ensembles.

The raw model range of the full CMIP5 ensemble,
hence, does not necessarily represent the actual uncer-
tainty of the climate system. It rather reflects the
ensemble design (or a lack thereof) and can either
overestimate or underestimate the actual uncertainty
(Lorenz et al 2018). To better capture real uncertainty
different methods account for model performance
and independence by selecting only a subset of models
(Pennell and Reichler 2011, Evans et al 2013, Leduc
et al 2016, Hegerl et al 2018, Herger et al 2019), finding
emergent constraints for the change in an investigated
variable (Hall and Qu 2006, Gordon and Klein 2014,
Cox et al 2018, Hall et al 2019), or model weighting
(Coppola et al 2010, Abramowitz and Bishop 2015,
Knutti et al 2017, Sanderson et al 2017, Lorenz et al
2018).

We here use a model weighting approach which
accounts for model performance and independence
(Sanderson et al 2015a, 2015b, Knutti et al 2017,
Lorenz et al 2018). In an initial step our study focuses
on selecting relevant diagnostics to establish model

performance and independence. For the first time we
use multiple observational data sets to inform this
method and to include an estimate of observational
uncertainty. Calculated weights are then applied to
projections of temperature and precipitation change
in eight different regions in Europe and in two future
periods. The selection of these regions and time peri-
ods is party guided by a coordinated effort by the
EUCP to compare different methods constraining
European climate projections to which this work is
contributing. In addition, the selected regions allow
for a discussion of the weighting performance in dif-
ferent parts of Europe and for three distinctively dif-
ferent regions sizes. Ultimately the aim of this study is
to better quantify the uncertainty of future changes
and to improve projection skill as well as enable the
usage of full multi-model ensembles without having to
manually account for multiple initial condition mem-
bers ormodel dependencies.

2.Data andmethods

2.1.Model data
This study is based on all available CMIP5 models
which contain the variables required to inform the
weighting (37models with a total of 79 realizations; see
figure S6 in the supplement for a full list). We use
monthly data, regridded to a regular 2.5°×2.5° grid
using bi-linear remapping. Throughout the study, we
base our weighting approach on the base-period
1995–2014 in the combined historical and Represen-
tative Concentration Pathway 8.5 (RCP8.5) (van
Vuuren et al 2011) forcing runs, and apply the weights
to RCP8.5 forcing runs for the future projections. The
base-period is selected to (i) best represent present day
conditions and (ii) in anticipation of and to be easily
comparable to the upcoming CMIP6 which uses
historical forcing up to 2014 (Eyring et al 2016).

2.2.Observation-based datasets
To account for uncertainties in the observational
records, the performance weighting is based on
observational estimates from two reanalysis datasets
and one combined observational dataset. We use the
interim reanalysis from the European Centre for
Medium-Range Weather Forecasts (ERA-Interim)
(Dee et al 2011) and the Modern-Era Retrospective
analysis for Research and Applications version2 from
the National Aeronautics and Space Administration
(MERRA2) (Gelaro et al 2017). In addition, we use a
combined observational dataset, which is based on the
ensemble version17 of E-OBS (Cornes et al 2018) (for
temperature, precipitation, sea level pressure) and the
CERES EBAF Surface Ed2.8 (Kato et al 2013) (for
radiation variables).
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2.3.Modelweighting
We focus on changes in summer (JJA) temperature
and precipitation in the three European SREX
(IPCC 2012) regions: Northern Europe (NEU), Cen-
tral Europe (CEU), and the Mediterranean (MED) as
well as in the combined European domain (EUR). In
addition, we test the performance of the method on
four single grid cells as listed in table 1. A geographical
map showing all regions as well as the model resolu-
tion and the applied land-seamask can be found in the
supplement (figure S1 is available online at stacks.iop.
org/ERL/14/124010/mmedia). The effects of the
weighting on future projections for two 20-year periods
representing mid-century (2041–2060) and end-of-
century (2081–2100) conditions are investigated.

Weights are calculated for each model following
the approach presented by Lorenz et al (2018), which is
based on earlier work from Knutti et al (2017) and
Sanderson et al (2015a, 2015b). Each weight wi is a
combination of the observational distanceDi (inform-
ing the performance weighting) and the model dis-
tance Sij (informing the independence weighting):
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with the total number of model runsM and the shape
parameters σD and σS. The shape parameters define
the strength of the weighting and the relative impor-
tance of performance and independence, large values
will lead to an approximation of equal weighting, while
small values will lead to aggressive weighting, giving a
few models most of the weight. The shape parameters

used in this study are summarized in table 1 and their
calculation is described by Lorenz et al (2018) and in
the supplement.

2.4.Diagnostics
The observational distanceDi, is based on six diagnos-
tics (see table 2). A diagnostic can be based on any
CMIP5 output variable for which observations are
available. The calculation of Di follows a straight-
forward approach: (i) variable, region, time period,
and season are selected, (ii) the mean (CLIM) or
standard deviation (STD) over the time period is
calculated, (iii) the point-to-point distance between
model and the center of the observational spread is
calculated, and finally (iv) the area-weighted root
mean squared error is calculated over the selected
region.

To account for uncertainty in our knowledge of
observed climate we use three observational estimates
in the calculation of the point-to-point distance (iii).
Several methods of combining these estimates and
their influence on the weighting are investigated. Dis-
tances are tested with regard to each of the estimates
individually as well as with regard to mean, median,
and full spread. A detailed description of all steps and
the different methods of combining observations can
be found in the supplement.

The independence weighting is informed by diag-
nostics which can be based on any CMIP5 output vari-
able which is available for all models. In practice, we
use the same diagnostics as for the performance
weighting. To compute the model distance Sij, the

Table 1.Regions and shape parameters (σD andσS) used in this study. The coordinates for the last four
regions give the center of the 2.5°×2.5° grid cell used.

Key Name Location σD (tas) σD (pr) σS

EUR Europe NEU+CEU+MED 0.588 0.658 0.704

NEU Northern Europe NEU 0.614 0.542 0.735

CEU Central Europe CEU 0.607 0.831 0.706

MED Mediterranean MED 0.546 0.667 0.643

FAL Falun (Sweden) 13.75 °E, 61.25 °N (NEU) 0.852 0.800 0.628

DUS Dusseldorf (Germany) 6.25 °E, 51.25 °N (CEU) 0.929 0.956 0.790

SIB Sibiu (Romania) 23.75 °E, 46.25 °N (CEU) 1.030 1.227 0.691

MAD Madrid (Spain) −3.75 °E, 41.25 °N (MED) 1.116 1.089 0.604

Table 2.Variables tested as diagnostics as well as selected diagnostics. Possible time aggregations are climatology (CLIM) and standard
deviation (STD).

Key Name Mask Used diagnostics

pr Precipitation Sea pr-CLIM

psl Sea level pressure —

rnet Surface downwelling net radiation Sea

rlds Surface downwelling longwave radiation Sea rlds-STD

rlus Surface upwelling longwave radiation Sea

rsds Surface downwelling shortwave radiation Sea rsds-CLIM

rsus Surface upwelling shortwave radiation Sea rsus-CLIM, rsus-STD

tas Near-surface air temperature Sea tas-CLIM

tos Sea surface temperature Land
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point-to-point difference (step (iii) above) is calcu-
lated between eachmodel pair.

To select the most informative diagnostics, differ-
ent combinations and numbers of diagnostics are tes-
ted and evaluated. The aim is to select diagnostics
which are, on the one hand, relevant for the target and,
on the other hand, add additional information to the
already used diagnostics (Gleckler et al 2008, Lorenz
et al 2018). We test a pool of variables (table 2) which
we judge to be relevant for predicting our targets and
for which observations are available. Indeed, the avail-
ability of observations of sufficient duration, spatial
coverage, and quality is a considerable constraint for
the pool of tested variables, particularly since we here
aim at using multiple data sets in order to include
observational uncertainty. Using the same approach as
Lorenz et al (2018), we select six diagnostics, which is
found to be a good number to differentiate between
high and low performing models (performance tends
to converge with an increasing number of diagnostics)
while not being overconfident in a model’s ability to
reproduce observed climate (which becomes an issue
with a lownumber of diagnostics) (Lorenz et al 2018).

2.5.Model-as-truth testing
A model-as-truth test (or perfect model test) picks
each model from a multi-model ensemble in turn and
treats it as the true representation of the climate
system. Weights for the remaining models are com-
puted using historical information from this perfect
model as ‘pseudo-observations’. This allows for an
evaluation of the impact of the weighting in the future
based on eachmodel representing the truth once. Here
this approach is used for two applications: (i) to
estimate the ideal shape parameter for the perfor-
mance weighting σD (as detailed in the supplement)
and (ii) to evaluate the impact of the weighting on the
skill of the future projections. As ameasure for the skill
we use the continuous ranked probability score
(CRPS) as detailed in Hersbach (2000). For each
perfect model the CRPS basically represents the mean

absolute error between the distribution of all other
models and the perfect model. We define the skill of
the weighting as the relative change in CRPS in the
end-of-century period:

=
-

´

( )
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CRPS CRPS
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3. Results

3.1. Summer temperature changes
We first calculate the optimized shape parameters (σD
and σS) for all regions and periods. They deviate only
slightly between mid-century and end-of-century and
we therefore use the average over both periods in the
computation of weights (table 1). Across all three
SREX regions, the sigma values for temperature
average to about σD=0.6 and σS=0.7, which is
comparable to earlier work focusing on maximum
summer temperature in North America (Lorenz et al
2018). In the four grid cell regions, the performance
sigma values are about 50% higher than for the SREX
regions due to the larger range of model-observation
differences without spatial aggregation. Generally
speaking, weighting based on smaller regions is less
robust and, therefore, more likely to be overconfident.
As a consequence the perfectmodel test correctly picks
higher performance sigma values that lead to more
evenly distributedweights and reduce overfitting.

Weighted and unweighted time-series of Medi-
terranean summer temperature are shown in figure 1.
Models with less warming consistently get the lowest
weights and, as a consequence, the weighted multi-
model mean shifts upward by an additional 0.35 °C by
the end of the century. The 25th percentile also shows
a strong increase, moving above 5 °C warming for
2081–2100 (see also figure 2(a)). Since the increase in
the 75th percentile is less distinctive, the weighting

Figure 1.Mediterranean summer temperature anomaly (relative to 1995–2014) based on 79models. Shown is the unweightedmean
(thick gray line) and interquartile range (gray shading) aswell as theweightedmean (thick red line) and interquartile range (red
shading). The three best and threeworst performingmodels are shown as thin red and purple lines, respectively. The observational
spread is indicated in black, based onERA-Interim,MERRA2, and E-OBS.
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also leads to a reduction of the interquartile spread by
almost 25%.

Figure 2(a) shows temperature change distribu-
tions for the combined European domain, two SREX
regions, and one of the grid cell regions. A summary of
all regions can be found in figure S2(a) in the supple-
ment. The effect of the weighting is generally smaller
for the mid-century period. In the full European
domain there is hardly any shift in the mean change,
but a considerably reduction of the interquartile
spread by about one quarter for the end-of-century
period. Analyzing spatial differences reveals that the
European domain seems to be a too large region to
average over. The weighted mean is colder in the
northern part and warmer in the southern part com-
pared to the unweighted case consistent with the SREX
regions described below. Aggregating over the entire
domain cancels out most of this effect in the mean. In
Northern Europe the interquartile spread widens by
almost a third due to the weighting. This behavior is
even stronger for the Falun grid cell with an increase
by over 50%. Based on our diagnostics, it seems that
models on both ends of the future temperature dis-
tribution get higher weights in NEU, indicating that a
simple average and standard deviation might be
slightly overconfident.

In Central Europe (figure S2(a)) neither mean nor
spread are strongly affected by the weighting. This
somewhat differs from findings by Vogel et al (2018),
who constrain summer maximum temperature in
this region to well below the ensemble mean, using
the correlation between maximum temperature and
precipitation as diagnostic. However, work from
Stegehuis et al (2013) suggests that warming is
underestimated by models in Northern and Central
Europe and overestimated in the Mediterranean. We
argue, therefore, that our approach might give a more
robust estimate of the potential to narrow the uncer-
tainty in this region, since it is based on a range of

six diagnostics rather than on a single emergent con-
straint. It is, hence, not surprising that the Central
European temperature distribution is not strongly
affected be the weighting in our more conservative
framework.

For the Mediterranean the weighting suggests that
the unweighted multi-model mean strongly under-
estimates the potential warming in both periods.
According to the weighted distribution, temperature
increases of more than 2 °C are very likely already by
the middle of the century when following RCP8.5. For
the end of the century warming of over 5 °C compared
to the 1995–2014 reference becomes increasingly
likely.

Figure 2(b) shows that the best models receive up
to tree times the median weight, except for the small
grid cell regions Falun andMadrid with amaximumof
14× and 7× higher weights, respectively (see also
figure S2(b)). The worst performing models in turn
can get considerably lower weights more than 20×
smaller than the median in several cases. Combining
the results from figures 2(a) and (b) reveals that the
effect of the weighting on the temperature distribution
is a combination of the weighting strength and whe-
ther weights are correlated with simulated warming.
The strong shift in the temperature distribution in the
Mediterranean region is mainly driven by about 20%
of the models which are heavily down-weighted for
being far away from the observations in the historical
period. For this specific region and target the majority
of these models come from the GISS model family,
which projects temperature changes on the lower end
of the distribution. In Central Europe the weighting is
equally strong but there is no clear clustering of
weights for warmer or colder models so that there is
hardly any effect on the temperature distribution. A
list of all models included in the study and their
corresponding weights in each of the regions can be
found infigure S6 in the supplement.

Figure 2. (a)Weighted (colors) and unweighted (gray) summermean temperature changes (relative to 1995–2014) in Europe (EUR),
Northern Europe (NEU), theMediterranean (MED), and Falun, Sweden (FAL). Shown is themean, 50%, and 90% spread. (b)
Strength of theweighting relative to themedianweight for the same regions.
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3.2. The effect of observational uncertainty
The area-mean observational range for theMediterra-
nean (shown in black in figure 1) can cover large
fractions of the interquartile model spread. This high-
lights the importance of accounting for observational
uncertainty, particularly for diagnostics where many
models lie within the observational spread. To investi-
gate the effect of using multiple observational esti-
mates we also calculate the weights based on each of
the three used observational datasets separately. In
most regions using only one dataset can lead to a shift
in the mean which is not in line with the combined
case (figure 3). This becomes even more important
when considering smaller regions such as FAL, where
using different observational estimates can lead to the
weighting changes having different signs. Note that
combining multiple datasets does not necessarily lead
to a linear combination of the weighting effect. This
can best be seen in the mean of NEU or in the 95th
percentile ofMED.We therefore stress the importance
of using as many observational datasets as possible or
feasible to best capture uncertainty in the observa-
tional estimates when evaluating historical model
performance.

To investigate the robustness of our approach to
combine multiple observational datasets we also look
into additional methods of combining the informa-
tion from the three datasets (see supplement for a
detailed description). As discussed in detail in
section 4 one can even argue that the observations
should also be weighted, but since the results from the
different approaches tested are reasonably robust
(figure S3), we limit ourselves to using the center of the
observational spread here.

3.3. Summer precipitation changes
Precipitation changes are most notably affected by the
weighting in Northern Europe (figure 4(a)): future
precipitation increases are strongly constrained for

both periods. This drives a reduction of the interquar-
tile range by up to 50%. Similar to temperature, the
effect on the precipitation distribution is mainly
driven by a strong down-weighting of about 25% of
models mainly from the CSIRO and IPSL families,
which show a slight precipitation increase (figures 4(b)
and S6). Looking into the absolute precipitation rather
than the change reveals that the lowerweightedmodels
are predominantly dryer than the mean in the
historical period and subsequently show a slightly
stronger increase in precipitation than themean under
RCP8.5.

In the combined European domain as well as Cen-
tral Europe, the weighting leads to a reduction in the
uncertainty of the projections of about 20% in the
middle of the century as the most prominent effect.
Using precipitation observations as a constraint this
potential of significantly reducing uncertainty in
future precipitation changes was also found by, e.g.
Zhang and Soden (2019). In the Mediterranean the
weighted distribution indicates a tendency towards
even dryer conditions than the unweighted mean.
Together with the results from temperature shown in
figure 2(a) this suggests that models with higher tem-
peratures and associated stronger drying aremore reli-
able based on their past performance.

3.4. Projection skill changes inmodel-as-truth tests
To evaluate the skill of the weighting approach we use
the CRPS in model-as-truth experiments for the end
of the century (2081–2100). Figure 5 shows the skill for
three different cases: (i) weighing of the full ensemble,
(ii) selecting a subset of the 10 best models (based on
the same weights) with each model getting equal
weight, and (iii) selecting a subset of the 10 bestmodels
where eachmodels keeps its original weight.

For temperature in the European domain the
median skill increases by almost 50% due to the
weighting. In the three SREX regions the skill also

Figure 3.As figure 2(a) but only for 2081–2100 and also showingweighting based on each of the observational data sets individually.
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increases, while there is hardly any increase in the grid
cell region (figures 5(a) and S5(a)). It is noteworthy
that the skill increase is also observable in regions
where there is no obvious change in the temperature
distribution (see, e.g. CEU in figure 2(a)). In the ‘mod-
els are indistinguishable from the truth’ paradigm
(Sanderson and Knutti 2012) this can be interpreted as
the observations representing one realization which
does not lead to a strong weighting. But other realiza-
tions (represented by model ‘pseudo-observations’)
can lead to aweightingwhich yields a skill increase.

For all regions there is also a chance that the skill
decreases due to the weighting. This can happen if the
perfect model has a very different response to future
forcing compared to the other models, leading to the
weighted multi-model ensemble moving further away
from the ‘truth’. This represents the possibility that
weighting models based on the distance to the observa-
tionsmay have negative impact on the skill of the future
projections. To minimize this risk of overconfidently
weighting the projections and giving too narrow
uncertainty estimates we select the performance shape
parameter σD also based on a model-as-truth test.

Therefore, the probability for a decrease in the skill is
smallwhenusing the full ensemble.

Comparing this approach to picking only the 10
best models (unweighted or weighted), yields similar
results for the median CRPS change and for the inter-
quartile range. For most regions the median perfor-
mance is even slightly better than for the full weighted
ensemble. Crucially, however, picking only 10 mem-
bers can perform considerably worse in the lower per-
centiles. Selecting a subset of models has a higher
chance of overfitting and can lead to a reduction in the
CRPS bymore than 75% for temperature.

Depending on the question it might, therefore, be
sufficient to only use a subset of the best models. The
median skill of the 10 weightedmembers is better than
using the full ensemble for all regions and sub-selec-
tion naturally leads to a highly reduced spread, which
can be valuable for certain applications. However, to
minimize the risk of making the projections worse it
can be important to use the full weighted ensemble.
This is particularly crucial for applications where
worst-case scenarios are important, e.g. when the goal
is to explore nonlinearities in impacts.

Figure 4.As figure 2 but for precipitation.

Figure 5.Change in the continuous ranked probability score (CRPS) in a ‘model-as-truth’ setting for (left) temperature change and
(right) precipitation change in the period 2081–2100 relative to 1995–2014.
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For precipitation the above considerations are
even more important with the 5th percentile of the
skill metric being reduced by 75% and more in many
regions when picking only 10 models. For Sibiu and
Madrid selecting only 10models even leads to negative
median skill (figure S5(b)). Using the full weighted
ensemble does also not lead to significant skill increa-
ses, but at least limits the maximum CRPS decrease to
about 50%.

In general, the model-as-truth tests show that
weighting precipitation projections only leads to
increased skill in reasonably large regions. In the lar-
gest region, the combined European domain hardly
any increase in the median skill is found, which can be
interpreted as the region being too large to apply a sin-
gle weight per model. The highest skill increases are
achieved in the Northern European region, with a
median increase of about 40%.

4.Discussion, conclusions, and outlook

This work applies a weighting approach, which
accounts for performance and independence, to temp-
erature and precipitation projections in Europe. We
show that weighting generally leads to an increase in
the median projection skill, which can reach up to
50%. This result depends strongly on the region size,
with smaller regions showing less increase and even a
decrease in one extreme case. It is, therefore, evident,
that some degree of spatial aggregation is needed in
order to produce robust weighting. In turn, weighting
leads to temperature and precipitation changes with
opposing signs in northern and southern Europe,
which cancel each other out when aggregating the full
European region. Choosing the right region size is
therefore crucial for producing reliable and physically
meaningful results.

The European SREX regions are found to be such
regions. For temperature the strongest effect of weigh-
ing is found in the Mediterranean, with a warming of
over 2 °C (compared to 1995–2014) becoming very
likely already by the middle of the century. For pre-
cipitation a large reduction in spread is evident in the
Northern European SREX region. Our results reveal
that a future decrease inNorthern European precipita-
tion is more likely than indicated by the unweighted
multi-model mean with models which show an
increase consistently getting the lowest weights.

Several important questions are not addressed
here and will be investigated in future work: How does
the number of diagnostics affect theweights and there-
fore the skill? Is there a subset of diagnostics which
have predictive skill formany different targets?What is
the impact of the diagnostic period length and the lead
time? Is there an influence of model resolution on the
ideal region size or is it rather driven by the homo-
geneity of the region? Further, the effect of the inde-
pendence weighting is not discussed in detail here. It

has been argued that using a measure for model inter-
dependence is important in so-called ‘ensembles of
opportunity’ such as CMIP5, which are not designed
to represent independent realizations of the climate
system (e.g. Abramowitz et al 2019). An in-depth
investigation of the independence weighting, e.g. by
consecutively adding more and more initial condition
members of the same model, is also currently in pro-
gress. Accounting for larger initial condition ensem-
bles will become increasingly important in light of the
upcoming CMIP6, for which several models with 20
andmoremembers are planned (WCRP2019).

To inform the weighting, we propose a novel
approach for including observational uncertainty and
apply different methods to account for the observa-
tional spread. In general, using only one observational
estimate as ground truth does not account for the fact
that datasets derived from observations represent rea-
lity with uncertainty. In the case of in situ measure-
ments uncertainty arises frommeasuring itself and the
subsequent processing into a gridded product. Specific
sources of uncertainties are, for instance, the accuracy
of the sensor, data gaps, and the gridding and inter-
polation procedures used. To account for the para-
metric uncertainties of the underlying procedures
increasingly multiple realizations are constructed,
such as the E-OBS or HadCRUT4 ensembles (Morice
et al 2012, Cornes et al 2018). Satellite remote sensing
such as the radiation measurements from the CERES
instruments provide another important source of
information for climate science. To derive relevant
atmospheric variables on a regular grid from the raw
measurements, physical theory and complex model-
ing as well as calibration procedures are necessary,
which are subject to uncertainty. Finally, reanalysis
datasets use process-based numerical models in their
estimation and therefore additional uncertainties
arise, for example, initial condition uncertainty and
boundary condition uncertainty.

To account for these uncertainties we use three
structurally different observational estimates and
apply different methods to combine them. Our results
show that including observational uncertainty leads to
more robust results, mostly independent of the used
method and therefore underline the importance of
using multiple observational datasets. However, while
the proposed weighting approach takes into con-
sideration that climate models are not independent
from each other, we still imply ‘observational democ-
racy’, assuming that all observational estimates are
independently constructed. Further research is needed
to account also for inter-dependence between obser-
vational estimates which could then potentially allow
the combined use of parametric and structural
ensembles.

The selection of variables, regions, and time peri-
ods in this work is guided by a coordinated effort to
compare differentmethods to constrain future projec-
tions of European climate, which is carried out in the
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frame of the EUCP project (Hewitt and Lowe 2018). In
light of the upcoming sixth assessment report (AR6) of
the IPCC andwith the new generation of CMIP6mod-
els becoming available and the connected increase in
initial condition members a broad discourse about
ways to combine multi-model ensembles will become
evenmore important in order to produce the best pos-
sible estimates of future changes.
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