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Understanding the regional pattern of projected
future changes in extreme precipitation
S. Pfahl1*, P. A. O’Gorman2 and E. M. Fischer1

Changes in extreme precipitation are among the most impact-
relevant consequences of climate warming1, yet regional
projections remain uncertain due to natural variability2 and
model deficiencies in relevant physical processes3,4. To better
understand changes in extreme precipitation, they may be
decomposed into contributions from atmospheric thermody-
namics and dynamics5–7, but these are typically diagnosedwith
spatially aggregated data8,9 or using a statistical approach
that is not valid at all locations10,11. Here we decompose the
forced response of daily regional scale extreme precipitation
in climate-model simulations into thermodynamic anddynamic
contributionsusinga robustphysicaldiagnostic8.Weshowthat
thermodynamics alone would lead to a spatially homogeneous
fractional increase, which is consistent across models and
dominates the sign of the change inmost regions. However, the
dynamic contribution modifies regional responses, amplifying
increases, for instance, in the Asian monsoon region, but
weakening them across the Mediterranean, South Africa and
Australia. Over subtropical oceans, the dynamic contribution
is strong enough to cause robust regional decreases in extreme
precipitation, which may partly result from a poleward circula-
tion shift. The dynamic contribution is key to reducing uncer-
tainties in future projections of regional extreme precipitation.

Climate models project a general intensification of extreme pre-
cipitation events during the twenty-first century on continental
to global spatial scales2,8,12,13, and this general large-scale ampli-
fication is consistent with observed trends in extreme precipita-
tion14–16. To first order, the simulated enhancement of extreme pre-
cipitation can be attributed to the increasing atmospheric moisture
content in a warming climate5,6, which approximately follows the
Clausius–Clapeyron equation. Other thermodynamic and dynamic
factors also influence its magnitude—in particular, changes in the
temperature lapse rate, in vertical wind velocities and in the tem-
perature anomaly when the extreme events occur8,9.

On regional scales, the change in extreme precipitation in a
warming climate can differ substantially from the global-scale
increase12,17. Such regional differences can be partly due to natural
variability2. Nevertheless, the simulated forced response to global
warming, the long-term response in the absence of internal vari-
ability, also exhibits regions with little change, and even substan-
tial areas with decreases in extreme precipitation, in particular in
the subtropics12,17. To understand the physical mechanisms caus-
ing these regional differences, previous studies have attempted to
decompose the regional signal into thermodynamic and dynamic
contributions using statistical methods10,11, which rely on the empir-
ical correlation of precipitation amount and vertical wind velocity
at 500 hPa. Such statistical methods are not applicable for regions

in which the correlation of precipitation with the vertical velocity at
500 hPa is weak10. Some of the problematic regions for the statistical
approach, such as the subtropics, are where the simulated change
in extreme precipitation differs most prominently from the global-
scale increase.

In this study, we apply a physical scaling diagnostic, which has
so far been used for studying aggregated changes in precipitation
extremes on large scales8,9, to decompose the forced regional change
in extreme precipitation in climate simulations from the Coupled
Model Intercomparison Project Phase 5 (CMIP5) for the period
1950–2100 into thermodynamic and dynamic contributions. This
scaling relates the precipitation amount during an extreme event,
in our case the annual maximum daily precipitation Pe at each
model grid point (often referred to as the Rx1day index), to
the corresponding vertical pressure velocity ωe and the vertical
derivative of the saturation specific humidity qs at constant
saturation equivalent potential temperature θ∗:

Pe ∼−

{
ωe

dqs
dp

∣∣∣∣∣
θ∗

}
(1)

Here {.} indicates a mass-weighted vertical integral over the
troposphere. This scaling relation can be derived assuming a moist-
adiabatic, saturated ascent of air parcels8 or, for the tropics, using
an energy budget approach that does not require an assumption of
large-scale saturated ascent18. The right-hand side of equation (1)
is an estimate of the column integrated net condensation rate, and
in general a precipitation efficiency must be included to convert
the scaling to an equality; this efficiency factor is important for
convective precipitation extremes on shorter timescales and smaller
space scales than considered here19. In this study, we use daily
mean temperature and vertical velocity profiles on pressure levels
at the location and on the day of the annual maximum daily
precipitation from 22CMIP5models to evaluate the right-hand side
of equation (1) (see Methods).

Testing the suitability of the diagnostic estimate with CMIP5
models (Fig. 1) reveals that the scaling relationship (equation (1))
very accurately reproduces the actually simulated multi-model
mean spatial pattern of annual maximum precipitation (Rx1day)
in the present-day reference period 1981–2000 (spatial correlation
of 0.99, root mean square difference of 5mmd−1). The scaling
overestimates the simulated precipitation amount in some dry
regions in the subtropics and underestimates it in moist regions in
the tropics and over the ocean, as well as in regions of complex
orography, such as along the west coast of North and South
America (Supplementary Fig. 1), which may be related to either the
approximations made in deriving the scaling or to not taking the
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Tables 
 
Table 1: CMIP5 models and corresponding number of ensemble members.  

Model name Number of members 
ACCESS1-0 1 
ACCESS1-3 1 
bcc-csm1-1-m 1 
BNU-ESM 1 
CanESM2 5 
CCSM4 1 
CMCC-CESM 1 
CMCC-CM 1 
CMCC-CMS 1 
CNRM-CM5 1 
CSIRO-Mk3-6-0 1 
FGOALS-g2 1 
GFDL-ESM2M 1 
IPSL-CM5A-LR 3 
IPSL-CM5A-MR 1 
IPSL-CM5B-LR 1 
MIROC5 2 
MIROC-ESM-CHEM 1 
MPI-ESM-LR 3 
MPI-ESM-MR 1 
MRI-CGCM3 1 
NorESM1-M 1 
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Supplementary Figures 

 

 
Figure S1: Ratio between present-day scaling and Rx1day. Ratio between multi-

model mean precipitation extreme scaling and simulated precipitation extremes both 

averaged over the period 1981-2000. 
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Figure S2. Present-day seasonal precipitation extremes and scaling. (a,c) Multi-

model mean seasonal maximum precipitation and (b,d) precipitation extremes scaling 

(equation 1) for (a,b) December-February and (c,d) June-August, averaged over the 

period 1981-2000. 
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Figure S3. Agreement of spatial patterns of changes in precipitation extremes and 

scaling. Area-weighted spatial correlation coefficients between fractional changes in 

Rx1day and fractional changes in precipitation extremes scaling for individual models 

and the multi-model mean. Blue bars show the range of correlation coefficients obtained 

from different initial condition members of the same model. The width of these bars is 

relatively small compared to the inter-model spread, suggesting that the differences in 

correlation coefficients are mainly due to structural differences between the models 

(rather than internal variability). 
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Figure S4: Changes in near-surface humidity. Multi-model mean fractional changes 

in (a) saturation specific humidity qs and (b) actual specific humidity q at 2 meters 

above ground, both conditioned on the occurrence of extreme precipitation. Stippling 

indicates that at least 80% of the models agree on the sign of change. Note that only 

data from 16 (instead of 22) models was available for this analysis. 

 

 

 
Figure S5. Changes in annual mean qs and ω. Multi-model mean fractional changes 

in annual mean (a) vertically integrated saturation specific humidity qs and (b) vertically 

averaged vertical velocity ω (with negative values indicating stronger ascent). Stippling 

indicates that at least 80% of the models agree on the sign of change. 
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Figure S6. Changes in qs and ωe due to shifts in the seasonality of precipitation 

extremes. Multi-model mean fractional changes in climatological mean (a) vertically 

integrated saturation specific humidity qs and (b) vertically averaged vertical velocity ω 

on the calendar day on which Rx1day occurs. These changes are derived from a linear 

regression for the period 1950-2100 in which the values of qs and ωe on the day of the 

annual maximum precipitation are replaced by the calendar day average values over the 

entire period. Stippling indicates that at least 80% of the models agree on the sign of 

change. The robust decrease in qs in many continental regions indicates a shift in the 

seasonality of precipitation extremes towards smaller saturation humidity and thus 

lower temperature, and this may be interpreted as a shift to the cold season. 
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Figure S7. Scaling analysis for December-February (DJF). Multi-model mean 

fractional changes in (a) seasonal maximum precipitation, (b) full precipitation 

extremes scaling and (c) thermodynamic scaling in which the vertical velocity ωe is kept 

constant. (d) Difference between changes in full scaling and changes in thermodynamic 

scaling (full minus thermodynamic). Stippling indicates that at least 80% of the models 

agree on the sign of change. A robust increase in DJF Rx1day is found for 66% of the 

global land areas, and a robust decrease for 5%. 
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Figure S8. Scaling analysis for June-August (JJA). Multi-model mean fractional 

changes in (a) seasonal maximum precipitation, (b) full precipitation extremes scaling 

and (c) thermodynamic scaling in which the vertical velocity ωe is kept constant. (d) 

Difference between changes in full scaling and changes in thermodynamic scaling (full 

minus thermodynamic). Stippling indicates that at least 80% of the models agree on the 

sign of change. A robust increase in JJA Rx1day is found for 47% of the global land 

areas, and a robust decrease for 6%. 
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Figure S9. Changes in seasonal mean ω. Multi-model mean fractional changes in 

seasonal mean vertically averaged vertical velocity ω in the season (DJF, MAM, JJA or 

SON) in which the precipitation extremes occur most often at the respective location 

(with negative values indicating stronger ascent). Stippling indicates that at least 80% of 

the models agree on the sign of change. 
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Figure S10. Anticipated change in ωe due to Hadley cell expansion. Change in the 

vertically averaged vertical velocity ωe conditioned on the occurrence of extreme 

precipitation obtained from an artificial poleward shift of the present-day multi-model 

mean pattern of ωe (see Fig. S11b) by 0.2° per K of multi-model mean global warming 

in the Northern Hemisphere and 0.32° per K in the Southern Hemisphere. This 

poleward shift mimics the poleward expansion of the Hadley cells as simulated by 

CMIP5 models20. The field is masked in regions where the topography exceeds 1000 m 

as well as poleward of 45° and equatorward of 22° in each hemisphere. Note the 

different colour scale compared to Fig. 3d. This anticipated expansion explains the 

pattern of the simulated change in ωe (see Fig. 3d) in the South Pacific, South Atlantic, 

eastern North Atlantic, Indian Ocean and Mediterranean region. The magnitude of the 

change is underestimated, which indicates that other factors are also important, or that 

the circulations associated with extreme precipitation shift poleward at a faster rate than 

the annual mean edge of the Hadley cells. 
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Figure S11. Present-day qs and ωe. (a) Multi-model mean vertically integrated 

saturation specific humidity qs and (b) vertically averaged vertical velocity ωe 

conditioned on the occurrence of extreme precipitation, averaged over the period 1981-

2000. 

 

 
Figure S12. Uncertainty of changes in precipitation extremes. Absolute uncertainty 

of fractional changes in Rx1day, quantified as the standard deviation of the regression 

coefficients across models. Note the non-linear scale. 
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Figure S13. Relative uncertainty of changes in full and thermodynamic scaling. 

Relative uncertainty of (a) fractional changes in full precipitation extremes scaling and 

(b) fractional changes in thermodynamic scaling with constant vertical velocity ωe, 

quantified as the ratio of the standard deviation of the regression coefficients across 

models and the absolute value of the multi-model mean fractional change. Note the non-

linear scale. 

 

 
Figure S14. Rx1day from observations. Annual maximum precipitation from GPCP 

observations33, averaged over the period 1996-2014. 
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Figure S15. Rx1day and scaling from reanalysis data. (a) Annual maximum 

precipitation and (b) precipitation extremes scaling (equation 1) from ERA-Interim 

reanalysis data36, both averaged over the period 1979-2015. 
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