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Anthropogenic contribution to global
occurrence of heavy-precipitation
and high-temperature extremes
E. M. Fischer* and R. Knutti

Climate change includes not only changes in mean climate
but also in weather extremes. For a few prominent heatwaves
and heavy precipitation events a human contribution to their
occurrence has been demonstrated1–5. Here we apply a similar
framework but estimate what fraction of all globally occurring
heavy precipitation and hot extremes is attributable to
warming.We show that at the present-day warming of 0.85 ◦C
about 18% of the moderate daily precipitation extremes over
land are attributable to the observed temperature increase
since pre-industrial times, which in turn primarily results
from human influence6. For 2 ◦C of warming the fraction of
precipitation extremes attributable to human influence rises
to about 40%. Likewise, today about 75% of the moderate
daily hot extremes over land are attributable to warming. It
is the most rare and extreme events for which the largest
fraction is anthropogenic, and that contribution increases
nonlinearly with further warming. The approach introduced
here is robust owing to its global perspective, less sensitive
to model biases than alternative methods and informative for
mitigation policy, and thereby complementary to single-event
attribution. Combined with information on vulnerability and
exposure, it servesasa scientificbasis for assessmentof global
risk fromextremeweather, thediscussionofmitigation targets,
and liability considerations.

Significant trends in temperature and precipitation extremes
over the recent decades have been observed7–10 and attributed to
human influence11–15. Although none of these extreme events was
exclusively anthropogenic in a deterministic sense, climate change
has changed their odds, which can be expressed as a change
in the fraction of attributable risk (FAR; refs 2,16). The FAR
framework has been used to quantify the human influence on the
occurrence of individual recent heat waves and dry spells1–4,17 and
heavy precipitation and flooding events5. Although the framework
is effective, the underlying model experiments often have to be
designed specifically for certain events. Thus, the FAR estimates for
the 2003 European heatwave are only valid for the observed anomaly
over the specific area, but do not apply to a similar event occurring
further east. Here we extend the FAR framework from individual
observed events to global scales. Thereby we address the question
of what fraction of extremes occurring globally is attributable to
human influence.

We use the two metrics ‘probability ratio (PR)’ and FAR (ref. 2),
defined as PR = P1/P0 and FAR =1− (P0/P1), respectively, where
P0 is the probability of exceeding a certain quantile during the
pre-industrial control period and P1 the probability of exceeding
it, for example, in present-day climate (see Methods). In simple
words, PR is the factor by which the probability of an event has

changed, and FAR indicates the fraction attributable to humans.
‘Fraction of events’ throughout the text should be interpreted as
an anthropogenic contribution to the probability of such events,
rather than some events being anthropogenic and some not. We
base our estimates on well-defined percentiles of daily temperature
and precipitation derived from long pre-industrial control runs of
25 CMIP5 models (see models in Supplementary Table 1).

In response to increasing global temperatures, models project
more heavy precipitation days, as illustrated by histograms
aggregating daily precipitation (Fig. 1) across Northern Europe
and North America (see Methods). The simulated occurrence of
heavy precipitation days under present-day warming of 0.85 ◦C
(blue lines) is only slightly higher than in pre-industrial conditions.
At a warming of 2 ◦C (red lines) the probability of the most extreme
cases, exceeding the pre-industrial 99.99%-quantile, increases by
about a factor of 1.5 to 3 depending on region and model (lower
panels). This implies that on average across the area an event
expected once every 10,000 days (about 30 years), in pre-industrial
conditions, is expected every 10 to 20 years at a 2 ◦C warming.
The wet tail of the precipitation distribution becomes fatter; thus,
the PR increases most rapidly for the most intense and rarest
events (Fig. 1) at the expense of days with moderate, low or no
precipitation. This is consistent with the finding that in some
cases mean precipitation decreases (primarily owing to large-scale
circulation change), whereas extreme precipitation increases owing
to increased water-holding capacity of warmer air18.

The PR averaged over global land regions is illustrated as
a function of global temperature increase (Fig. 2). On average
over land, at a global warming of 2 ◦C the probability of
precipitation extremes increases by about 65% for moderate
extremes (exceeding the 99.9th percentile—that is, expected
once in about three years). This corresponds to a FAR estimate
of about 0.39 (see Table 1 for uncertainty range)—that is, at
2 ◦C warming roughly 40% of the heavy precipitation events
worldwide are attributable to warming (Fig. 2c). Owing to a lack
of century-long homogeneous daily observations with global
coverage, this increase in PR cannot be directly observed. However,
we demonstrate that, for the period for which observations
are available, the change in precipitation extremes per degree
global temperature increase in the CMIP5 multi-model is
remarkably consistent with observations (see Supplementary
Text and Supplementary Fig. 1) and if anything tends to be
somewhat underestimated by the models14,19. The observed global
temperature increase primarily results from human influence, so
that in a two-step attribution the changes in the occurrence of
temperature and precipitation extremes are attributable to human
influence2,20. The FAR increases most strongly for the highest
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Figure 1 | Regional changes in precipitation extremes. a,b, Histograms of daily precipitation for Northern Europe (a) and North America (b), binned
according to the local percentiles in the pre-industrial control simulation (black) of the respective model for a present-day warming of 0.85 ◦C (blue dots,
individual models) and a 2 ◦C warming (red dots, individual models) relative to pre-industrial conditions. c,d, Probability ratios (PR) for individual bins
relative to pre-industrial conditions for Northern Europe (c) and North America (d). Bins of all land gridpoints are aggregated across Northern Europe
48◦–75◦ N; 10◦W–40◦ E and North America 12◦–66◦ N; 60◦–170◦W.

percentiles (Fig. 2c), which implies that particularly the rarest
and most extreme heavy precipitation events are attributable to
human influence.

The FAR differs substantially between warming targets of 1.5 ◦C
(mean FAR is 0.30, uncertainties given in Table 1), 2 ◦C (0.39)

and 3 ◦C (0.52). For the observed warming of 0.85 ◦C, the FAR
is about 0.18. This is consistent with the mean FAR (0.19)
in the period 1991–2020 even though not all simulations are
consistent with the observed warming, which leads to a higher
uncertainty range.
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Figure 2 | Rapidly increasing global fraction of attributable risk of extremes over land. a,b, Probability ratio of exceeding the (blue) 99th and (red) 99.9th
percentile of pre-industrial daily precipitation (a) and temperature (b) at a given warming level relative to pre-industrial conditions averaged across land.
c,d, Fraction of attributable risk averaged across land for given levels of global warming and selected percentiles for precipitation (c) and temperature (d).

Table 1 | Model uncertainty in FAR estimates.

Precipitation extremes
Warming 99th percentile 99.9th percentile
0.85 ◦C 0.08 (0.03/0.16) 0.18 (0.10/0.28)
1.5 ◦C 0.15 (0.08/0.24) 0.30 (0.21/0.41)
2.0 ◦C 0.20 (0.12/0.30) 0.39 (0.29/0.51)
3.0 ◦C 0.29 (0.20/0.39) 0.52 (0.43/0.64)
Temperature extremes
0.85 ◦C 0.60 (0.47/0.66) 0.75 (0.61/0.86)
1.5 ◦C 0.79 (0.68/0.85) 0.93 (0.84/0.97)
2.0 ◦C 0.85 (0.78/0.91) 0.96 (0.92/0.99)
3.0 ◦C 0.91 (0.85/0.94) 0.98 (0.95/0.99)
Multi-model mean estimate and associated minimum and maximum model estimate in
brackets for di�erent global warming levels shown in Fig. 2c,d.

In response to increasing global temperatures the PR increases
almost everywhere over land and is largest over mid- to high
latitudes (see Supplementary Fig. 2 and Table 2) and the tropics,
whereas reduced probabilities dominate in subsidence regions
off the west coasts (Fig. 3). This pattern is consistent with
the multi-model mean changes in precipitation extremes21–23.
Note that the FAR estimates differ between seasons and regions
(Supplementary Table 2).

For temperature extremes, the trend to more hot extremes
with increasing global temperature is ubiquitous. Already at an
observed warming of 0.85 ◦C the probability of 1-in-1,000-day hot
extremes over land is about five times higher than in pre-industrial
conditions—that is, roughly 75% of those moderate hot extremes
are attributable to warming (Fig. 2b,d). Again, the CMIP5 multi-
model mean agrees well with the observed increase in hot extremes
over the past six decades (Supplementary Fig. 1) with a tendency to
a slight overestimation in themajority ofmodels19,24. The increase in
probability and FAR differs across regions (Supplementary Table 3)

and is most pronounced over the tropics (Fig. 3) as a result of the
weak seasonal cycle and low interannual temperature variability25,26.

With further warming, the PR of hot extremes increases
nonlinearly to very high levels, and the FAR quickly approaches the
maximum FAR value (1−P0). The probability of a hot extreme at
2 ◦C warming is almost double that at 1.5 ◦C and more than five
times higher than for present-day (Fig. 2b). This result has strong
implications for the discussion of different mitigation targets in
climate negotiations, where differences between targets are small in
terms of global temperatures but large in terms of the probability
of extremes.

This nonlinearity is robust and found even for a simple shift of
the whole temperature distribution to a warmer climate.We test this
by adding the simulated spatial warming pattern consistent with a
global mean warming of 2 ◦C to the entire pre-industrial control
run. This yields a similar PR pattern (Supplementary Fig. 3) and
remarkably similar global FAR and PR estimates (Supplementary
Fig. 4) to the actual transient simulations.

We here focus on daily events, but the probability and FAR of
5-day, 15-day or 31-day temperature and precipitation extremes
increase even faster with rising temperatures27 (Supplementary
Fig. 5). For the observed warming the FAR for a 15-day extreme
wet spell is about 0.27, compared to 0.18 for daily extremes, and
for a 15-day heat wave it is about 10% higher than for daily events,
which is consistent with the high FAR estimates and strong increases
documented for monthly to seasonal extremes1–3,10,28. The primary
reason again is that the pre-industrial distribution is narrower for
multi-day means or seasonal temperatures than daily temperatures,
whereas their mean warming signal is the same.

In a broader context, the approach here is reminiscent of
medical studies, where it is not possible to attribute a single
fatality from lung cancer to smoking. Instead, a comparison of
the lung-cancer-related mortality rate in smokers with the rate
in non-smokers may allow attribution of the excess mortality to
smoking. Likewise, no single weather event exclusively results from
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Figure 3 | Change in probability of heavy precipitation and hot extremes. a–f, Multi-model mean probability of exceeding the pre-industrial 99th
percentile of daily precipitation (a–c) and temperature (d–f), relative to pre-industrial. Ratios are shown for 30-year periods in which the global mean
temperatures warmed 0.85 ◦C (present-day) (a,d), 2 ◦C (b,e) and 3 ◦C (c,f) above pre-industrial conditions.

anthropogenic influence in a deterministic sense but arises from
complex interactions of atmospheric dynamics, local boundary
layer and land-surface interaction and potentially anomalous
sea-ice and ocean conditions29. Warmer temperatures may
influence some of those factors and favour extreme events to
happen, and thus the probability of such events increases because
of warming.

Quantifying a human contribution to the likelihood of a single
event is challenging because there is sometimes a considerable
observational uncertainty in the exact intensity of the event, which
affects the return period estimate and to a lesser extent also the
calculated FAR. Event attribution is based on the assumption that
the climate model used can reproduce the observed anomalies
during extreme events for the right reason—that is, it provides a
reliable representation of the key underlyingmechanisms. However,
in some cases models may even be unable to simulate the extent of
an observed event, which implies that bias correction of mean and
possibly even higher-order moments are required1,4. We here avoid
the problem of observational uncertainty, and reduce the sensitivity
to model biases by using percentile thresholds that are well defined
from very long control runs. However, model biases in higher-
order moments such as variance or skewness may still be relevant.
For instance, if a model underestimates the present-day variance
or simulates a too negatively skewed temperature distribution, the
exceedance probability for a givenwarmingwould be overestimated.
However, a bias correction of variance and skewness with
observational data would potentially induce a high uncertainty
given the lack of observational coverage and long temperature series.
It should be noted that models have well-known deficiencies in
representing some of the driving processes of extremes, such as
blocking frequency and persistence, parameterized convection and
land-surface feedbacks. Nevertheless, we argue that the changes in
probability ratio are robust, assuming that the models accurately
capture the patterns of the forced response. The fact that the
simulated changes in extremes per degree warming agree with
observations, and that our findings are consistent with a mean shift

of the distribution, increases our confidence in the estimates. The
finding that a substantial fraction of the globally occurring hot
and heavy precipitation extremes are attributable to the observed
warming is consistent with trend attribution studies for temperature
extremes11–13 and precipitation extremes14,15, and the argument that
all of today’s weather events are to some extent affected by a warmer
and moister climate30.

The framework applied here prevents us from tying the
attribution statements to specific recent events of which society
has experienced the direct consequences. However, the advantage
of the global perspective is that the statements are more robust
owing to better sampling. At the gridpoint scale, internal variability
induces very large uncertainties in changes of the frequency of
extremes19. We demonstrate that the global aggregation cancels
this local noise, as nine realizations of the same model yield very
similar global FAR estimates (Supplementary Fig. 6). Aggregation
may even compensate some local model differences—induced, for
instance, by local surface boundary conditions such as soil and
vegetation types, representation of lakes and topography. The use
of coupled simulations avoids the need to prescribe sea surface
temperatures and the assumption that modes of variability in
sea surface temperature remain constant5. Because the proposed
approach uses well-defined thresholds based on very long control
runs, it is relatively insensitive to model biases, accounts for model
uncertainties in the response of the coupled climate system, and
is robust owing to its large-scale perspective. The approach is
complementary to existing event attributions that are powerful for
communication and informative for local liability consideration
and adaptation decisions. The global framework on the other hand
can serve as a valuable tool for global risk assessments, informing
mitigation and adaptation decisions. To this end it can be combined
with vulnerability and exposure maps to assess not only the event
probability, but the actual risk. For instance, the fraction of heavy
precipitation and hot extremes attributable to warming is highest
over the tropics and many island states, which typically have high
vulnerability and low adaptive capacities.
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Already today 75% of the moderate hot extremes and about 18%
of the moderate precipitation extremes occurring worldwide are
attributable to warming, of which the dominant part is extremely
likely to be anthropogenic6. The fraction increases nonlinearly with
furtherwarming such that the probability of hot extremes at 2 ◦C, for
example, is double that at 1.5 ◦C global warming. With every degree
ofwarming it is the rarest and themost extreme events—and thereby
the ones with typically the highest socio-economic impacts—for
which the largest fraction is due to human-induced greenhouse
gas emissions.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
We analyse daily output of historical simulations for the period 1901–2005 as well
as future projections forced with RCP8.5 for the period 2006–2100. We use output
of 25 CMIP5 models that provide all the necessary output to analyse changes in
daily temperature and precipitation extremes (see Supplementary Table 1).

We quantify the probability of exceeding certain percentiles of daily
temperature and precipitation. The percentiles are calculated at each individual
gridpoint from daily data for the last 200 years of the pre-industrial control
simulations, which ensures well-defined levels even for the local 99.99% quantiles.
Note that, in contrast to the ETCCDI indices TX90 or TN10, we do not use
seasonally varying percentiles but calculate the percentiles based on all days of a
200-yr period. Consequently, the temperature extremes occur during the hottest
period and do not include the anomalous warm days of the cold season as for
TX90. The same 200-yr pre-industrial control period is used for the reference
global mean temperature relative to which the warming targets are defined. For
precipitation the percentiles are defined across all precipitation and
non-precipitation days of the last 200 years of the pre-industrial control run to
avoid a change in the number of wet days affecting the percentile level.

In Fig. 1 we illustrate the change in the occurrence of heavy precipitation days
using daily histograms aggregating over Northern Europe and North America. To
this end we bin the daily precipitation data for each model according to the above
pre-industrial percentiles of the respective model. Note that the bins have the same
relative limits but the absolute limits differ across gridboxes. We bin daily
precipitation for the 30-yr period in which the respective model shows a mean
warming of 0.85 ◦C (present day) and 2 ◦C at each grid point. The frequency of
days in the 30-yr period falling in each of the bins is then averaged across the area
of Northern Europe and North America, respectively. Thereby we derive
area-aggregated histograms of daily precipitation shown in Fig. 1.

We here use the two metrics ‘probability ratio (PR)’ and ‘fraction of
attributable risk (FAR)’ introduced by ref. 2. Probability ratio is defined as
PR=P1/P0, where P0 is the probability of exceeding a certain quantile during
the pre-industrial control period—that is, 0.01 for the 99th percentile—and P1

the probability of exceeding it in any given period (for example, present-day
or at 2 ◦C warming). The fraction of attributable risk is then defined as
FAR=1−(P0/P1)=1−(1/PR). Both PR and FAR were referred to as ‘risk’ in
earlier studies2,16, but PR is just a ratio of frequencies of occurrence, and in our
context does not include any damage, vulnerability or exposure, which are
accounted for by comprehensive risk definitions. The term FAR has become
common, but is better thought of as which fraction of a series of a particular event
can be attributed to external influence.

To calculate a global estimate of PR, we first calculate the frequency of
exceeding the 99th and 99.9th percentile at each grid point in each year from
1901 to 2100. We then calculate an area-weighted average across land gridpoints
to estimate a global PR—and based on that a global FAR. We then calculate a
30-yr running mean of PR and FAR, which in Fig. 2 is plotted against the
30-yr mean of annual global mean temperatures relative to pre-industrial
conditions. Based on this we estimate the PR and FAR value for the 30-yr
period when the respective model shows a warming of 0.85, 1.5, 2 and 3 ◦C. The
red band in Fig. 2 is derived by fitting a spline to the each model’s PR estimates
and showing the highest and lowest model estimate for a certain level of warming.
Note that this range simply reflects a model spread that may not necessarily
reflect an assessed uncertainty range. The PR and FAR estimates for low warming
levels include much variability and need to be interpreted with care. The PR
values are calculated on the native model grid, which differs in resolution across
the models. However, we find no dependence of the PR and FAR estimates on
model resolution.
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