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Robust projections of combined humidity and
temperature extremes
E. M. Fischer* and R. Knutti

Impacts of climate change such as the effects on human
discomfort, morbidity and mortality often depend on multiple
climate variables. Thus, a comprehensive impact assessment
is challenging and uncertainties in all contributing variables
need to be taken into account. Here we show that uncertainties
in some impact-relevant metrics such as extremes of health
indicators are substantially smaller than generally anticipated.
Models that project greater warming also show a stronger
reduction in relative humidity. This joint behaviour of un-
certainties is particularly pronounced in mid-continental land
regions of the subtropics and mid-latitudes where the greatest
changes in heat extremes are expected. The uncertainties in
health-related metrics combining temperature and humidity
are much smaller than if uncertainties in the two variables were
independent. Such relationships also exist under present-day
conditions where the effect of model biases in temperature
and relative humidity largely cancel for combined quantities.
Our results are consistent with thermodynamic first principles.
More generally, the findings reveal a large potential for joint
assessment of projection uncertainties in different variables
used in impact studies.

During recent major summer heatwaves, such as in 2003 in
central and western Europe and 2010 in Russia, themortality locally
increased by tens of thousands of additional casualties1. Apart from
excessive temperature anomalies, other factors such as humidity,
radiation, lowwinds and air pollution potentially contributed to the
enhanced mortality and more generally to the human discomfort.
Likewise,many other socio-economic or ecological climate impacts,
for example on agricultural production, forest fires, glacier retreat,
river runoff or energy production, depend on more than one
climate variable. Consequently, for a comprehensive assessment of
climate change impacts it is imperative to take into account the
uncertainties in all contributing variables.

In many cases the different climate variables are linked through
first principles or basic mechanisms that are well understood, for
example, warmer air being able to hold more moisture, or soil
moisture variations affecting the partitioning of sensible and latent
heat. The relationships depend on the temporal resolution of the
variables considered and may vary across different quantiles2,3. In
many cases they have been found to be relatively well captured by
models, for example, for temperature and precipitation4,5. Despite
the knowledge about the relationships across variables, they are
often ignored in the context of projections. The Fourth Assessment
Report of the Intergovernmental Panel on Climate Change6, for
example, provides projections of many variables, but each of those
is discussed separately. Recently some studies have quantified
how relationships across variables evolve into the future7,8 or
how their often correlated uncertainties can be transformed into
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joint probabilistic projections9,10. However, there is a serious lack
of research addressing joint projections in variables other than
temperature and precipitation.

Here we use simulations from 15 general circulation models
(GCMs; Supplementary Table S1) of the new Climate Model Inter-
comparison Project phase 5 (CMIP5; ref. 11) to demonstrate that in
selected cases uncertainties in impact-relevant variables are smaller
than generally anticipated. To this end, we focus on two variables
that are considered as well-established risk factors for human
health: temperature and humidity. High ambient temperatures and
humidity reduce the human body’s efficiency of transporting away
the metabolic heat through evaporative cooling (sweating) and
heat conduction12. Consequently, they lead to heat stress and can
increase both morbidity and mortality13. To quantify the combined
effects of temperature and humidity we here use the simplified
wet-bulb globe temperature (W ; refs 12,14,15) and the thermody-
namicallymotivated equivalent temperature16,17 (seeMethods).

Figure 1 illustrates the 2m temperatures and relative humidity
on the 1% warmest days (hereafter, Tx1% and RHx1%) of the
period 1986–2005 for each GCM (red dots). In both Southern
Australia (SAU) and Central North America (CNA), present-day
Tx1% and RHx1% vary strongly across models (SAU, Tx1%: 29–36 ◦C,
RHx1%: 17–46%; CNA, Tx1%: 28–37 ◦C, RHx1%: 24–59%). The
corresponding values derived from the European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA)
Interim (Fig. 1, yellow dots) andNational Centers for Environmen-
tal Prediction—Department of Energy (NCEP-DOE) Reanalysis 2
(Fig. 1, white dots; see Methods) fall within the range of GCMs.
To illustrate the model spread we fit a kernel density estimate18
to the bivariate distribution (Fig. 1, red shading). Given the
limited number of models the kernel density should be interpreted
with caution. However, it is evident that models showing hotter
temperatures tend to simulate lower relative humidity. Despite the
large spread in the contributing variables, models agree remarkably
well onW on the hottest 1% of days (Wx1%, solid black lines mark
equal W levels) and the model spread in Wx1% is substantially
smaller than if the inter-model differences in the two variables
were uncorrelated (Fig. 1 grey shading). The reduction of model
spread is even more pronounced for equivalent temperature (Teq,
that is, the temperature an air parcel would have if all water
vapour were condensed; see Methods), which demonstrates that
the result is consistent with thermodynamical first principles. The
agreement between models and cancellation of model differences
is a consequence of the negative correlation between RHx1% and
Tx1%. This negative correlation is limitedmainly tomid-continental
land regions in North America, Eurasia, the Amazonian basin and
parts of Australia (Supplementary Fig. S1). In these regions the
relationship implies that the pronounced differences in temperature
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Figure 1 | Model agreement in maximum heat stress. Relative humidity (RHx1%) versus temperature (Tx1%) averaged across the hottest 1% of days
(defined as all days exceeding the local 99th percentile of daily temperatures) of the period 1986–2005 (historical simulation with all forcings). Variables
are averaged across SAU (110◦–155◦ E and 30◦–45◦ S) and CNA (85◦–103◦W and 30◦–50◦ N). The red points mark individual CMIP5 models and the red
shading illustrates the joint uncertainty spanned by the model range. The grey-to-black shading illustrates the corresponding range if Tx1% and RHx1% were
uncorrelated. The yellow and white points show the reanalysis data for ERA Interim and NCEP-DOE Reanalysis 2, respectively, for the period 1986–2005.
The black solid lines mark isolines of equal equivalent temperatures (Teq) and the dashed lines mark isolines of equal simplified wet-bulb globe
temperatures (W).
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Figure 2 | Reduction in model spread resulting from temperature and humidity correlation. The panels show the ratio of potential versus actual model
spread (2σ across all 15 GCMs) in simplified wet-bulb globe temperatures during hottest 1% of days (Wx1%). a, The ratio by which model spread would be
larger if all models had the same RHx1% (ensemble mean calculated for each grid box; ratio 2 indicates that model spread would be twice of what it actually
is). b, The ratio by which model spread was larger if Tx1% and relative RHx1% were completely uncorrelated and their spread was considered
fully independent.

and humidity across models tend to cancel in terms of atmospheric
heat content, expressed as Teq. Consequently, the biases in Wx1%
(Supplementary Fig. S2) and Teqx1% (Supplementary Fig. S3) with
respect to the reanalyses are substantially smaller than expected
from the biases in Tx1% and RHx1%. These findings demonstrate
that despite model deficiencies in characteristics of, for example,
convective precipitation, soil hydrology and cloud formation that
potentially contribute to the considerable regional biases in hot ex-
tremes (Tx1%), the GCM ensemble mean generally agrees well with
Wx1% andTeqx1% in reanalysis data, particularly overCNAand SAU.

Figure 2 shows the cancellation of the model spread resulting
from the correlation of temperature and humidity. The spread
in Wx1% across models (expressed as 2σ ) would be substantially
greater if RHx1% at a given grid point was the same in allmodels, that
is, if the higher temperatures were not compensated by humidity
deficits (Fig. 2a). If the contributing variables were completely
independent, the spread in Wx1% would be more than doubled
in many regions if Tx1% and RHx1% (Fig. 2b). This is further
illustrated by the grey shading in Fig. 1 combining the spread in
Tx1% and RHx1% as if they were unrelated. Negative correlations
are also found if relative humidity and temperature on the 5%
or 10% warmest days are considered instead of the hottest 1%
of days. The relation weakens towards lower quantiles but is still
significant for summer means.

We find a similar joint behaviour of temperature and humidity
under climate change, that is, models that simulate stronger
warming also tend to show stronger RHx1% reduction, shown in
Fig. 3. The correlation between warming and drying is robust
across different representative concentration pathways (RCP4.5
and RCP8.5) in CMIP5 and the emission scenario A1B in CMIP3.
However, the relation across models, which is here illustrated
for western North America, CNA and southern Europe and
the Mediterranean is limited to roughly the same regions that
exhibit a pronounced negative correlation under present-day
conditions (Supplementary Fig. S4). Those regions, in particular the
northern subtropics to mid-latitudes, can be considered as hotspots
because they experience the largest ensemble mean change in Tx1%
(Fig. 3a) and thus, the greatest reduction in return periods of hot
extremes19,20. In those regions, the warming and drying signals
involve very large model uncertainties, as shown for temperature
in Fig. 4b. Given those uncertainties in changes of temperature and
humidity, one would expect projections of the combined impact-
relevant variable Wx1% to be of little value. However, owing to the
correlation in the change of the two contributing variables (Fig. 3),
the resulting uncertainty in the projections of the maximum heat
stressWx1% is surprisingly low.

Across many land regions the uncertainty range in Wx1%
(Fig. 4d) is no greater or even smaller (particularly in the hotspot
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Figure 3 | Joint projections in hot extremes and humidity. Change in regional average temperature and relative humidity on the hottest 1% of days (Tx1%

and RHx1%) averaged across the three regions western North America (103◦–130◦W and 30◦–60◦ N), CNA (85◦–103◦W and 30◦–50◦ N), Southern
Europe and the Mediterranean (10◦W–40◦ E and 30◦–48◦ N). The circles mark the 15 GCMs of the CMIP5 experiment (red for RCP8.5, orange for
RCP4.5) and the brown squares mark the 14 GCMs from the CMIP3 experiment (for A1B scenario). Changes are shown for the period 2081–2100 relative
to 1986–2005 for the CMIP5 models and relative to 1981–2000 for the CMIP3 models. 2 m temperatures and relative humidity are shown for CMIP5,
whereas for CMIP3 the values are shown at the 925 hPa level owing to a lack of daily model output at surface levels.

regions) than the corresponding uncertainty in Tx1% (Fig. 4b). The
uncertainty in Wx1% would be substantially larger if the RHx1%
change was assumed to be identical in all models (Fig. 4e). If
Tx1% and RHx1% changes were uncorrelated across models the
uncertainties in Wx1% would be locally larger by a factor of two or
more in many land regions (Fig. 4f). Only over dry desert regions
such as the Sahara or Namib Desert the uncertainties in Tx1% and
RHx1% do not tend to offset each other.

We argue that the above joint behaviour arises from simple
physical processes. On global scales and over open water bodies,
near-surface humidity of the air roughly follows the increasing
temperatures according to the Clausius–Clapeyron relationship,
and thus relative humidity remains roughly constant21. This is not
necessarily the case over land, where evapotranspiration may be
limited, and models thus project decreasing RHx1% particularly
during the hottest days of the year. This behaviour arises from a lack
of soil moisture that reduces latent and enhances sensible heat flux
and thereby amplifies temperature extremes and at the same time
dries the planetary boundary layer. Consequently, the partitioning
of the heat content of the near-surface air into enthalpy and latent
heat differs across models, whereas their sum, the atmospheric heat
content H is robust. This explanation is supported by the good
agreement amongmodel projections for Teq.

The above mechanism is further supported by the spatial
patterns in the Tx1% and RHx1% signal. The areas showing the
greatest warming of the hottest 1% of days also experience the
strongest RHx1% reduction (Supplementary Fig. S5). The pattern
correlation is highly significant for all but one model (r < −0.6
in 7 GCMs), and for the model average (r =−0.76). As a result,
the climate change signal in Wx1% is more uniform (Fig. 4c)
than the heterogeneous pattern of Tx1% (ref. 14). The greatest
warming in dry regions (becoming even drier) and the weakest
warming in humid regions (remaining humid, for example, tropical
Africa and southeast Asia) tend to yield the same response of
W owing to the nonlinearity in its definition and thus result
in a spatially homogeneous Wx1% response pattern. Consistent
with earlier studies, heat stress is projected to increase over all
land regions along with rising temperatures. Using the concept of
equivalent temperature, the changes in heat stress (1Teqx1%) can be
separated into a relative contribution from temperature (1Tx1%)
and from humidity content (Lv/Cp) 1qx1% (ref. 22) The change
in temperature alone explains 60–80% of the change in equivalent
temperature over the dry mid-latitudes. However, along the coasts

and over the humid regions such as the tropics and southeast
Asia roughly two-thirds of the change in Teqx1% would be missed
if the change in specific humidity was neglected. This supports
earlier findings that the humidity-induced heat stress amplification
is strongest in the regions that are warmest and most humid under
present-day conditions14,23,24.

The above examples highlight two remarkable findings that have
broader implications: models agree remarkably well on a highly
challenging measure such as present-day extremes of heat stress
indicators and the uncertainties in the projection of these indicators
are much smaller than expected from the uncertainties in the
contributing variables. More generally, the first finding highlights
that joint variability should be considered in the evaluation of
present-day model performance. We provide a prominent example
for covariability inmodel biases, whichmay exist in numerous other
sets of variables. The fact that models tend to agree on variables
such as equivalent temperature that have been highlighted as key
metrics for the assessment of climate change16 should increase
our confidence in those models. On the other hand, our findings
also demonstrate that certain simulated variables may agree with
observations for the wrong reasons and thus are not ideal for
model evaluation. Another consequence is that model biases in one
variable affect biases in other variables. Nevertheless, a common
assumption made in climate projections is that model biases from
control integrations can be subtracted (the so-called constant-
bias approach). Our results confirm that for certain variables
this may be problematic, as pointed out earlier for temperature
extremes in Europe25.

The second finding underlines that there is a need to develop
frameworks for joint uncertainty projections, rather than focusing
on uncertainties in individual variables alone. Thereby, the relevant
impacts should be taken into account when discussing the joint
probability. If, for instance, the multi-model ensemble were
used to estimate the risk of fire weather, conclusions would
be opposite. Low humidity and high temperatures are well
established risk factors for wild fires26 among many other factors.
Consequently, for such an impact variable the uncertainties in
humidity and temperature would add up rather than compensate,
giving rise to very large uncertainties in fire weather indices.
Our results underline the need for statistical frameworks for
a quantitative multivariate assessment. They could complement
existing approaches of combining model averages in model
variables as best estimates, even though these may not represent
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Figure 4 | Reduction of uncertainty in joint projections. a,b, Ensemble mean change in Tx1% (a) for RCP8.5 in 2081–2100 with respect to 1986–2005 and
corresponding uncertainties (b). Uncertainties are expressed as 2σ across the changes in 15 GCMs of the CMIP5 experiment relative to the mean change,
expressed as a percentage. c,d, The same as a,b but for change in W1x%, the simplified wet-bulb globe temperatures on the hottest 1% of days. e,f, Ratio by
which the uncertainties in d would be larger/smaller if the change in RHx1% were the same in all models (that is, local ensemble mean change). f is the
same as in e but if the change in Tx1% and RHx1% were independent.

plausible model states27 and may not correspond to the joint best
estimate in a multivariate sense.

We see great potential in studying other sets of variables such
as the difference of precipitation and evapotranspiration (P–E), a
relevant measure for large-scale hydrology and agriculture that is
expected to be better constrained than the individual variables P
and E . Ultimately, such multivariate considerations are vital for
impact assessments that allow stake-holders to take well-informed
decisions on adaptation strategies.

Methods
The simplified wet-bulb globe temperature12,14,15 (W ) is defined as
W = 0.567T +0.393e+3.94, where T is the temperature in degrees Celsius
and e is the simultaneous vapour pressure in hectopascals. Here, it is calculated
at each grid box on the basis of daily mean temperatures and mean vapour
pressure. In Fig. 1 W on the hottest 1% of days (Wx1%) for each pair of variables
is calculated on the basis of the saturation vapour pressure esat derived from T
and relative humidity.

The findings are consistent with the thermodynamical concept of the
atmospheric heat content, H =CpT +Lvq, (also referred to as moist static energy
or moist enthalpy)28, where Cp is the specific heat of air at constant pressure
(∼1,005 J kg−1 K−1), T is the temperature, Lv is the latent heat of vaporization

(∼2.430× 106 J kg−1 at 30 ◦C) and q is the specific humidity. To compare
the model behaviour in a thermodynamically motivated metric, we calculate
the equivalent temperature Teq =H/Cp = T + (Lvq)/Cp. Teq is similar to T
during cold winter days but can differ strongly during warm and particularly
humid winter days.

The model results for present-day conditions are compared against daily
output at surface levels of reanalyses data for the same period (1986–2005) from
the ECMWF ERA Interim reanalysis29 and the NCEP-DOE Reanalysis 2 (ref. 30).
The data are processed at the native grid and the final fields are regridded for
comparison with the model products.
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