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Abstract We use an initial condition ensemble of an Earth System Model as multiple realizations of the
climate system to evaluate estimates of climate sensitivity and future temperature change derived with a
climate model of reduced complexity under “perfect” conditions. In our setup, the mean and most likely
estimate of equilibrium climate sensitivity vary by about 0.4–0.8°C (±1σ) due to internal variability. Estimates
of the transient climate response vary much less; however, the effect of the spread and bias in the transient
response on future temperature projections increases with lead time. Future temperature projections are
shown to be more robust for central ranges (i.e., likely range) than for single percentiles. The estimates
presented here strongly depend on a delicate balance between a particular realization of the climate system,
the emerging constraints on the estimates as well as on the signal, and the decreasing uncertainties in ocean
heat uptake observations.

1. Introduction

After more than 40 years, equilibrium climate sensitivity (ECS) is still today’s most widely used metric to
characterize the magnitude of the Earth’s temperature response to changes in radiative forcing. Based on
different lines of evidence, the Intergovernmental Panel on Climate Change (IPCC) concluded in its recent Fifth
Assessment Report (AR5) that the likely range (central >66%) is 1.5–4.5°C [Intergovernmental Panel on Climate
Change, 2013], featuring a slightly lower limit compared to the previous Assessment Report (AR4). The upper
temperature limit did not change, and the likely range for ECS has been rather robust in the past decades [Knutti
and Hegerl, 2008]. Yet the quest for a tighter uncertainty range of equilibrium climate sensitivity recently gained
new momentum when studies used the updated observed surface and ocean warming together with energy
budget equations [Otto et al., 2013] or reduced complexity climate models [Aldrin et al., 2012; Lewis, 2013] and
found values near the lower end of the previously long-standing likely range to be more plausible. In contrast,
the current generation of fully coupled climatemodels of the CoupledModel Intercomparison Project 5 (CMIP5)
as well as recent estimates from the paleorecord show still a mean estimate of about 3.2°C (±1.3°C, 90%
uncertainty) [Forster et al., 2013] and a range of 2.2–4.8°C [Rohling et al., 2012], respectively. The reason for the
different modes for ECS (i.e., median) across different studies, methodologies, and models is still unclear.

Here we focus on probabilistic methods with reduced complexity climate models which infer climate system
properties such as ECS from the observed changes in surface temperature and ocean heat content by fitting
an ensemble of climate model simulations to the observed record [e.g., Aldrin et al., 2012; Forest et al., 2002;
Huber and Knutti, 2012; Knutti et al., 2002; Lewis, 2013]. Both surface and upper ocean temperatures that are
used as observational constraints in these methods have increased more slowly in the last decade or two
compared to earlier periods, with the period since 1998 often termed the hiatus period. At the same time, the
global top-of-atmosphere energy balance still shows a negative imbalance [Loeb et al., 2012; Stephens et al.,
2012]. Recent modeling studies suggest that internal variability, including the El Niño–Southern Oscillation
and the Interdecadal Pacific Oscillation play a key role in this hiatus, resulting in more heat uptake and
transport to the deep ocean [Guemas et al., 2013; Kosaka and Xie, 2013; Meehl et al., 2011, 2013a].

However, a validation of these probabilistic estimates is neither feasible nor is their sensitivity to unforced
climate variability known, since we are inevitably bound to use the single realization of the real-world climate
system as constraint, with climate sensitivity being unknown. To overcome this issue, we use a 20-member
initial condition ensemble of an Earth SystemModel as multiple realizations of the climate system to evaluate
such climate sensitivity estimates under “perfect” conditions and to quantify the effect of internal variability.
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The setup used here extends a previous study using a similar approach byOlson et al. [2013] in that it includes
all historic forcings, the uncertainties associated with individual forcing agents as well as the application of
both real-world observations and simulations by an Earth System Model to constrain parameters of an Earth
System Model of Intermediate Complexity (EMIC).

2. Methods and Model Simulations

The EMIC used to obtain distributions of climate system properties is the Bern2.5D model. It is based on a
zonally averaged dynamic ocean model and resolves the ocean basins of the Atlantic, Pacific, Indian, and
Southern Oceans. The ocean model is coupled to a zonally and vertically averaged energy and moisture
balance model of the atmosphere [Schmittner and Stocker, 1999; Stocker et al., 1992]. We employ the historical
natural and anthropogenic annual mean radiative forcings of the Representative Concentration Pathways
(RCP) scenarios to drive the model. We use the 20c3m scenario during the period 1765–2005 and the RCP8.5
scenario onward for the 21st century.

The implementation and prior distributions of scaling factors in the Bern2.5D climate model, which account
for the uncertainty in different forcing agents and climate system properties, are described in earlier studies
[Huber and Knutti, 2012; Knutti et al., 2003; Tomassini et al., 2007]: in total, 13 parameters are sampled in the
model: 3 physical parameters including the equilibrium climate sensitivity as well as 10 forcing scaling
parameters accounting for forcing uncertainty, e.g., of greenhouse gases, direct and indirect aerosol effects,
volcanic eruptions, and solar variations. The default parameter sampling setup uses a uniform distribution of
ECS between 1 and 10°C. To test the sensitivity of our results to the choice of ECS prior distribution, we also
computed all the results for the two nonuniform gamma distributions: a rather low-sensitivity distribution
with shape and scale parameters of 2.1 and 0.95, resulting in a mean of 2°C (0.4–4.7°C, 5–95% range), as well
as a larger sensitivity distribution with parameters of 4.3 and 0.95 with a corresponding mean of 4.1°C
(1.5–7.8°C, 5–95% range) (see supporting information). The 13 model parameters are constrained with a
Markov Chain Monte Carlo algorithm package for MATLAB [Haario et al., 2006]. Unforced internal variability is
represented with an autoregressive process [Tomassini et al., 2007]. In order to increase the computational
efficiency of the parameter-constraining process, the full Bern2.5D model is replaced with a neural network.
We use 5000 independent time series in which the 13 model parameters are sampled to train a three-layer
feedforward neural network built of 10 nodes [Huber and Knutti, 2012].

The 20-member initial condition ensemble is performed with the Community Earth System Model (CESM)
version 1.0.4. The model consists of the Community Atmosphere Model version 4 (CAM4) and a fully coupled
ocean, sea ice, and land surface components [Gent et al., 2011] with an ECS value of 4.1°C [Meehl et al., 2013b].
The transient climate response (TCR) is estimated to be 1.7°C based on a 10-member ensemble of a transient
1% increase in CO2 scenario. The model is driven by historical forcing until 2005 and the RCP8.5 scenario until
2100. In order to create an initial condition member ensemble, a small random perturbation in the order of
10�13 is imposed on 1 January 1950, to the atmospheric initial condition field of the reference run, producing
a 20-member ensemble covering the period 1950–2100.

As observations, we use the HadCRUT4 [Morice et al., 2012] data set for surface air temperature (Had in this
paper) and the ocean heat uptake to 700m data of Domingues et al. [2008] (DOM) and Levitus et al. [2012]
(LEV). The reduced complexity model is constrained to both global temperature and ocean heat uptake to
700m observations, resulting in the two combinations: HadDOM and HadLEV, respectively. When the
reduced complexity model is constrained to the 20-member ensemble, the observations are replaced by the
output of the simulations of the CESM climate model.

3. Results

The range of distributions for the equilibrium climate sensitivity and the transient climate response when
all simulated observations by the Earth System Model are used until the year 2012 is shown in Figure 1.
Allowing for larger uncertainties in ocean heat uptake observations (HadDOM, Figure 1a) leads to both
higher ECS and TCR values compared with the setup where ocean uncertainties are small and almost
constant (HadLEV, Figure 1b). The effect of internal variability is about as twice as large for ECS than for
TCR: the mean values for ECS vary about 0.5°C (HadLEV) to 0.7°C (HadDOM) (1σ), with similar values of
0.4°C and 0.8°C for the most likely values. This spread in the estimates corresponds to about 15% (±1σ)
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(13–20% for the most likely values) around the ensemble average. The TCR values vary in the order of
about 0.1°C, corresponding to a spread of about 6% (±1σ).

In contrast to the real world, this setup offers the opportunity to evaluate the probabilistic estimates obtained
with this method since ECS and TCR of the Earth System Model are known (dashed lines in Figure 1). Within
the setup of this study, the situation where only one realization of the climate system is available and which
we are faced with in the real world has roughly about a 15% chance (HadDOM), respectively, a 45% chance
(HadLEV), that the underlying sensitivity could lie outside the estimated likely range, compared to the
expected 34% in a likely range (central 66%). Figure 1 shows that the HadDOM setup generally overestimates
TCR, whereas ECS is underestimated with the HadLEV setup.

The joint evolution of ECS and TCR over time since the year 1970 is shown in Figure 2 both for estimates
obtained from real-world observations and the corresponding simulations of the Earth System Model. We
emphasize that the ECS of the real world and of the Earth System Model are different; thus, the figure
emphasizes the temporal behavior of the two setups. The high and constant sensitivities between 1970 and
2000 are strongly related to the choice of prior distribution for ECS. For all three prior choices accounted for in
this study, the ECS and TCR distributions show almost no change between 1970 and 2000, after which they
start to converge to very similar values today (see supporting information).

The most striking difference between the observed and perfect-model setup can be seen since about the
year 2000, where climate sensitivity estimates obtained from the observations decrease much sharper than
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Figure 1. Estimates of climate sensitivity and the transient climate response: (a and b) Posterior distributions for equili-
brium climate sensitivity (ECS) and transient climate response (TCR) are derived by constraining a reduced complexity
model to the simulations of a 20-member initial condition ensemble of the Community Earth System Model with known
sensitivities of 4.1°C (ECS) and 1.7°C (TCR) (black dashed line), which we treat as observations, using a uniform prior
(see Methods). Values are shown for the two setups: Figure 1a shows HadDOM and Figure 1b shows HadLEV, which differ in
their magnitude and treatment of uncertainty in ocean heat uptake observations (see Methods). Each curve represents an
estimate for one realization of natural variability. (c and d) The ensemble spread and percentile ranges for ECS and TCR.
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the corresponding values of the perfect-model case. Additionally, climate sensitivity can strongly vary
between subsequent years when only small errors in ocean heat uptake are considered (HadLEV), suggesting
that the reduced complexity model tries to fit interannual or decadal variations that cannot be reproduced by
the model without variability.

The constrained climatemodel parameters allow us to compute probabilistic estimates of future temperature
change under the RCP8.5 scenario that are consistent with past observed changes in global temperature and
ocean heat uptake. Figures 3a and 3b show the ensemble-mean projections over time which generally agree
well with the projected temperature change of the Earth System Model. Since the HadDOM setup slightly
overestimates the reference TCR of the Earth System Model, it overestimates the warming toward the end of
the 21st century.

The estimates presented here are Bayesian in nature, and their relation to commonly used ensemble-
frequentist based skill score metrics such as in weather prediction has been neither clear nor possible owing
to the limited number of model simulations and the lack of real-world observations for validation. The
20-member ensemble of the fully coupled model allows to compare the two different prediction methods for
the first time and to answer, for example, whether at least 10 out of the 20 predictions fall within the central
50% prediction range derived with the reduced complexity climate model.

This concept is illustrated in Figures 3c and 3d for the decadal temperature projections over the 21st century.
For each of the 90 decades starting from the 2000s, we have 20 “true” values as simulated by the Earth System
Model (ESM) as well as 20 corresponding probabilistic distributions for the two setups derived with the EMIC.
Starting with the first ensemble member, we can compute in which predicted central range (i.e., 5–95%, likely
range) the true ESM value lies. Thus, in the case where prediction ranges can be interpreted in an ensemble-
frequentist sense, 66% of the cases should contain the true simulated value within the estimated likely range
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Figure 2. Temporal evolution of climate sensitivity and transient response estimates as a function of the calendar year: The
colored tubes denote the joint 5–95% uncertainty range of the estimates of equilibrium climate sensitivity (ECS) and
transient climate response (TCR), whereas the side projections show the likely (central 66%) and 5–95% range for two
quantities individually. The solid lines denote the mean estimate. (a and c) The distributions where the reduced com-
plexity climate model is constrained to two observational data sets (HadDOM and HadLEV), whereas (b and d) the
simulations of the Earth System Model are taken as observational constraints. Figures 2b and 2d show the ensemble-
averaged sensitivity distributions. The reference values of the ESM are denoted as red lines.
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(defined as central 66% of the distribution predicted by the EMIC), defining a linear relation against which our
predictions can be tested (dashed black lines in Figures 3c and 3d). For each of the decades, we obtain 90
estimates of the percentage of the cases containing the true simulated value, and Figure 3c shows that on
average, such a linear relation is indeed found.

However, the result is not as robust for a specific lower (or upper) bound compared to the central prediction
range as depicted in Figure 3d. For example, the figure shows that the number of cases, in which the true
reference values lie below the 20% percentile of the prediction estimate is overestimated in the HadLEV case,
whereas it is underestimated in the HadDOM case due to the skewed sensitivity distributions and their biases
relative to the reference sensitivity shown in Figure 1.

4. Summary and Conclusions

Using a probabilistic setup of a reduced complexity model and an ensemble of an Earth System Model, we
showed that unforced climate variability is important in the estimation of the climate sensitivity, in particular
when estimating the most likely value, and more so for the equilibrium than for the transient response. A
particular emphasis was put on the role of uncertainties of upper ocean heat uptake observations by taking
two different observational data sets into account. The spread of climate sensitivity estimates presented in
Figure 1 suggests that the effect of the treatment of these uncertainties on climate sensitivity estimate is of
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similar order than that of internal variability: the difference in the ensemble mean estimate of ECS of the two
setups of about 1.1°C is even larger than the spread for the HadDOM ensemble of 0.7°C.

The evaluation of the probabilistic temperature projections derived with the reduced complexity model with
the 21st century simulations of the Earth SystemModel showed a strong agreement in terms of the ensemble
mean values. In this setup, projections of individual ensemble members are more robust when central ranges
are considered than individual prediction percentiles (i.e., the median), since they are either high (HadDOM)
or low (HadLEV) biased depending on the two setups. In addition, the effect of the spread and bias in the
transient response on future temperature projections increases with lead time since the estimate of TCR with
this method is strongly related to the total radiative forcing. For example, a change in TCR of 0.5°C corresponds
to a change in the mid-21st century decadal temperature prediction of ~0.5°C, whereas it amounts to three
times as much toward the end of the century.

This study also highlights the importance of the last decade in estimating climate sensitivity, in particular of
the role of ocean heat uptake: the climate signal gets stronger and emerges from noise, and uncertainties are
reduced, which helps to constrain model parameters. But at the same time variability that is not reproduced
in the model becomes important, and structural biases of simple models become evident.

Overall, we find a delicate balance between a poor constraint and, as a consequence, issues with the choice of
priors as long as the data is not very clear (as seen in many early studies on this topic), and overfitting and
structural problems of simple models once the data constraint becomes strong. The framework employed here
provides a powerful test of suchmethods, but at the same time raises questions about the reliability of the results,
in particular when oversimplified models are used, and when internal variability is not carefully accounted for.
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