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2 REVIEW OF ECONOMIC STUDIES

climate models that took part in the coupled model intercomparison project, phase 5 (CMIP5). In particu-
lar, we propose to use four different test cases that are considered pivotal in the climate science literature:
two highly idealized tests to separately calibrate and evaluate the carbon cycle and temperature response,
an idealized test to quantify the transient climate response, and a final test to evaluate the performance
for scenarios close to those arising from economic models, and that include exogenous forcing. As a
concrete example, we re-calibrate the climate part of the widely used DICE-2016, fathoming the CMIP5
uncertainty range of model responses: the multi-model mean as well as extreme, but still permissible cli-
mate sensitivities and carbon cycle responses. We demonstrate that the functional form of the climate
emulator of the DICE-2016 model is fit for purpose, despite its simplicity, but its carbon cycle and tem-
perature equations are miscalibrated, leading to the conclusion that one may want to be skeptical about
predictions derived from DICE-2016. We examine the importance of the calibration for the social cost
of carbon in the context of a partial equilibrium setting where interest rates are exogenous, as well as
the simple general equilibrium setting from DICE-2016. We find that the model uncertainty from differ-
ent consistent calibrations of the climate system can change the social cost of carbon by a factor of 4
if one assumes a quadratic damage function. When calibrated to the multi-model mean, our model pre-
dicts similar values for the social cost of carbon as the original DICE-2016, but with a strongly reduced
sensitivity to the discount rate and about 1 degree less long-term warming. The social cost of carbon
in DICE-2016 is oversensitive to the discount rate, leading to extreme comparative statics responses to
changes in preferences.

1. INTRODUCTION

Anthropogenic climate change and the associated economic damages constitute a substantial
negative externality from CO2 emissions. Economic policy can mitigate this externality and
potentially lead to significant welfare gains across all economic agents (see, e.g. Nordhaus 2018;
Kotlikoff et al. 2021a, 2021b, 2021c). In order to determine the optimal mitigation strategies,
economists need to develop quantitative models that produce a realistic link between CO2 emis-
sions and global warming and that are informed by research in climate science as presented in
the Intergovernmental Panel on Climate Change (IPCC)1 reports, that is, the “state-of-the-art”
in climate science.

The backbone of the IPCC reports are the coupled model intercomparison projects (CMIP5
and CMIP6; see Taylor et al. 2012; Eyring et al. 2016), which bundle the output from a col-
lection of global climate models (GCMs) that run on pre-defined future scenarios, notably
future greenhouse gas (GHG) concentrations. The GCMs come essentially in two flavors:
Earth system models (ESMs), which cover biogeochemical processes like the carbon cycle
and can take carbon emissions as input, and coupled atmosphere-ocean global climate mod-
els (AOGCMs), which lack biogeochemical processes and can take only GHG concentrations as
input. One fundamental challenge is that the computational costs for ESMs (and for AOGCMs)
are so significant that they are not suitable for studying the two-way feedback between the
Earth system and human behavior.2 Therefore, economic models focusing on this feedback
have to rely on a much-simplified representation of the Earth system component. Simplified
and computationally cheap-to-evaluate climate models come at different levels of complexity
(and computational costs) and under different names: climate emulators (CEs), energy bal-
ance models, simple climate models, or ESMs of intermediate complexity. We avoid using this
differentiation throughout this paper and, somewhat loosely, just use CE or the climate model.

There is a proliferation of different CEs used in the climate-change economics literature.
The most popular emulators can be found in the dynamic integrated model of climate and the

1. For more details on IPCC, see, e.g. https://www.ipcc.ch.
2. See, e.g. Danabasoglu et al. (2020), who stated that the Community Earth System Model Version 2 (CESM2),

one of the most popular ESMs, needs more than 3,000 CPU hours to simulate 1 year of the global climate.
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Folini et al. THE CLIMATE IN CLIMATE ECONOMICS 3

economy (DICE) (Nordhaus 2018), in PAGE (Hope 2013), as well as that in Golosov et al.
(2014). Unfortunately, as Calel and Stainforth (2017) pointed out, “in failing to maintain clear
links to the physical science literature, the climate components of these models have become
opaque to the scientific community.” Even worse, there is no consensus in the (economics) lit-
erature about what makes a “good” climate model, that is, which data the model is supposed to
be matched to when choosing the model’s functional forms and parameters.

We close this gap by developing a comprehensive and transparent suite of tests that aims
to answer the following key questions: (i) When a particular CE used in economics fit for pur-
pose?, and (ii) Which calibration strategy should generally be applied so that the CE is in line
with state-of-the-art climate science? We advocate the use of four test cases that are standard in
climate science, notably in the context of CMIP (Eyring et al. 2016; Keller et al. 2018). Two
of the said tests will be used for the calibration of the CE, whereas another two tests are used
for evaluating the CE. For CEs as used by economists, these four tests can be regarded as com-
prehensive. However, the said test cases are typically not employed by economists to evaluate
their emulators. We showcase our proposed strategy, including economic effects at an exam-
ple from the seminal DICE model family: we re-calibrate one specific version—DICE-2016
(Nordhaus 2018)3 —according to our battery of tests to match the output of climate science mod-
els and obtain “Calibrated DICE” (CDICE). In addition, we illustrate the economic importance
of a proper calibration of the CE.

A key functionality of any CE is to translate anthropogenic emissions, as computed by the
economic model, into a global mean temperature change. The task is typically split into two parts
(see, e.g. DICE Nordhaus 2018): a “carbon cycle” which translates anthropogenic emissions in
the wake of human economic activity into changes in the atmospheric CO2 concentration, and
a temperature model which translates changes in atmospheric CO2 concentrations into global
mean temperature changes. We propose first to calibrate both parts of the CE independently,
using one test case for each calibration. Each of the two test cases comes, from a climate science
perspective, with a plausible range of outcomes. To capture this range, we suggest for each test
case one intermediate and two extreme calibration targets, to be detailed below. This leaves
us with a total of nine differently calibrated CEs, three calibrations for the carbon cycle times
three calibrations for the temperature part. Finally, we advocate evaluating the performance of
these differently calibrated CEs against two additional climate science benchmarks, also detailed
below, that are closer to real-world applications. The four tests and the associated CMIP5-based
benchmark data are well consolidated and explored in the literature.4

The first test we use targets the calibration of the carbon cycle. It uses a highly idealized
setup; an instantaneous emission of 100 GtC to the present-day atmosphere is followed in time.
The CE is calibrated such that the (steadily decreasing) fraction of emitted carbon remaining in
the atmosphere aligns with benchmark data adopted from Joos et al. (2013). We choose three
specific calibration targets—one intermediate and two extremes—to mirror the range of carbon
cycle responses considered plausible from a climate science point of view. As an intermediate
target, we use the average response of all models in Joos et al. (2013); their multi-model mean

3. Below, we use the abbreviation DICE-2016 and DICE interchangeably.
4. The CE calibrations and test cases used here are all based on CMIP5 data, which is publicly available under

http://iacweb.ethz.ch/staff/beyerleu/cmip5/ and https://esgf-node.llnl.gov/search/cmip5/. Meanwhile, data from the sixth
generation of the CMIP6 are available, and one may wonder whether switching from the CMIP5 data to the newer
CMIP6 data makes a difference. Dedicated studies comparing CMIP5 and CMIP6 simulation data suggest that this is
not the case for those aspects of climate and its modeling that we are interested in here. We discuss this point in detail in
Section 3.4.
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4 REVIEW OF ECONOMIC STUDIES

(MMM).5 As extreme calibration targets, we use two specific models from the study by Joos
et al. (2013), leaving either a very large (cf. their model “MESMO”) or small (cf. their model
“LOVECLIM”) fraction of emitted carbon in the atmosphere in the long run (cf. Joos et al.
2013). In the following, to make the different calibration targets transparent where necessary,
we add the name of the corresponding target model to the general name CDICE.

The second test we use targets the calibration of the temperature equations. Being highly ide-
alized, it follows the evolution of the global mean temperature after an instantaneous quadrupling
of atmospheric CO2 concentrations with respect to pre-industrial values. The CE is calibrated to
meet benchmark data anchored in CMIP5 and adopted from Geoffroy et al. (2013). The range
of warming displayed by the different CMIP5 models is considered plausible from a climate sci-
ence point of view, strong or weak warming are plausible limiting cases (Knutti et al. 2017). We
choose three specific calibration targets again to capture this range: the MMM, as well as two
models that show a rather strong (model HadGEM2-ES, Hadley Center Global Environmental
Model 2) or weak (model GISS-E2-R, Goddard Institute for Space Studies Model E) warming
in the long run within CMIP5.

Any full-fledged quantitative economic treatment of climate change must take this “model
uncertainty” seriously. Even in a simple representative agent framework, the attitude of the rep-
resentative agent toward risk and uncertainty becomes a crucial determinant for optimal carbon
policy (see, e.g. Barnett et al. 2020, 2022). To assess the effect of climate model uncertainty
on economic models, the so-called equilibrium climate sensitivity (ECS) parameter is often var-
ied within the range observed in CMIP5 models (see, e.g. Hassler et al. 2018, or Nordhaus
2018). The ECS measures the long-term increase in global average temperature expected to
occur after an instantaneous doubling of the atmospheric CO2 concentration; different projected
warmings imply a different ECS (Geoffroy et al. 2013). While being endogenously determined
in AOGCMs, the ECS is an exogenous parameter determining long-run warming in CEs. The
approach of just changing the ECS parameter to sample the uncertainty range is often a useful
shortcut, but it misses part of the relevant temperature dynamics. We will show below that it
makes a difference whether one changes only the ECS of the CE or, as we do, really calibrates
the CE against CMIP5 model data whose ECS (high for HadGEM2-ES, low for GISS-E2-R)
can then be associated with upper and lower bounds on the true costs of climate change and can
also provide an average scenario (MMM) that can, perhaps, be viewed as “most likely.”

The third test evaluates the CE’s transient climate response (TCR), using the same setup as
in climate science: starting in 1850 at pre-industrial levels, the atmospheric CO2 concentration
gradually increases at 1% per year until doubling after 70 years (quadrupling after 140 years).
The TCR is defined as the warming after 70 years. It is not calibrated for but, rather, is an
emergent property of both the CE and CMIP5 models—or any AOGCM or ESM in general.
This test allows comparing the TCR of the CE with values from CMIP5. In fact, the TCR is a
standard test in climate sciences and a compulsory test for any GCM to take part in CMIP (see
Eyring et al. 2016). As the test takes CO2 concentrations as input, not emissions, it addresses
only the temperature equations of the CE.

The fourth test case is closer to what integrated assessment models (IAMs) are expected to
cope with in real applications: the CMIP5 simulations for the historical period and future rep-
resentative concentration pathways (RCPs) for three different forcing levels (RCP26, RCP45,
RCP60, RCP85).6 Input data are either prescribed atmospheric CO2 concentrations or CO2

5. The multi-model mean is a debated, but regularly used, benchmark quantity in climate sciences (see, e.g.
Beusch et al. 2020; Thao et al. 2021, and references therein).

6. The scenarios describe the results of different socio-economic narratives that produce particular concentration
profiles of greenhouse gases, aerosols, and other climatically relevant forcing agents over the twenty-first century. The
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Folini et al. THE CLIMATE IN CLIMATE ECONOMICS 5

emissions.7 In the latter case, the entire climate model is tested; in the former case, only its tem-
perature equations. Within the CE, an assumption has to be made on non-CO2 forcings, which
form part of the CMIP5 data. The CE climate is evaluated against data from the CMIP5 archive.

To exemplify our calibration strategy, we apply it to the climate part of the widely used
DICE-2016 model by Nordhaus (2018). As Dietz et al. (2021) pointed out, the most commonly
used CEs in economics, including Nordhaus’ widely used DICE-2016 model, seem seriously
flawed in that they cannot reproduce the evolution of atmospheric CO2 and temperature for the
basic test case of an instantaneous carbon pulse to the present-day atmosphere (Joos et al. 2013).
Based on this one test case, which mixes the response of the carbon cycle and the temperature
equations, they conclude that “economic models of climate change are out of line with state of
the art in climate science,” and they recommend that “the climate modules in economic models
be replaced.” While we confirm the finding by Dietz et al. (2021) that the carbon cycle of
DICE-2016 leaves too much CO2 in the atmosphere and its temperature response to a sudden
increase in CO2 concentration is too slow, our study also demonstrates that their conclusion that
the climate model must be replaced is incorrect. In particular, we show that the functional form
of the CE in DICE-2016 is fit for purpose and can be re-calibrated to match results from our
test cases with respect to the multi-model mean as well as concerning CMIP5 extreme cases.
For the carbon cycle, no perfect calibration is possible as the functional form in DICE and the
benchmark data from Joos et al. (2013) are different. By contrast, the temperature equations in
DICE are formally identical to those in Geoffroy et al. (2013), thus the calibration target can be
matched exactly.8 Our study goes beyond Dietz et al. (2021) in that we present a comprehensive
set of tests to ascertain transparently whether a CE is fit for purpose and, if not, we also present
means to re-calibrate a CE properly on the condition that its functional form is fit for purpose.

To examine the impact of different climate calibrations on the optimal price of carbon, we
first consider a very simple partial equilibrium setup where we take the path of emissions, the
growth rate, and the interest rate as exogenously given. As it is standard in economic models
of climate change (see, e.g. Nordhaus 1979; Golosov et al. 2014), we assume that an aggregate
damage function determines what fraction of output is destroyed as a function of the temperature.
In these (deterministic) models, the optimal carbon tax equals the social cost of carbon (SCC),
which can be computed as the marginal cost of carbon emissions, that is, as the sum of all
future damages, discounted at the market interest rate, that results from an infinitesimal extra
emission of CO2 into the atmosphere. The ratio of growth rate and interest rate then constitutes
the correct discount factor for these calculations and, as it is well documented in the literature,
one of the most important determinants of the SCC. We show that for a given discount factor
and emissions scenario, the model uncertainty from climate science can change the SCC by a
factor of four if one assumes a quadratic damage function; one of the most common functional
forms in the literature. This finding is (roughly) independent of discounting and emissions, but
depends crucially on the functional form of the damage function. Simply adjusting the ECS in
the equations of the climate emulator leads to significantly different estimates for the SCC than

RCP85 scenario, for instance, reflects a “no policy” narrative, in which total anthropogenic forcing reaches approx-
imately 8.5 W/m2 in the year 2100. Conversely, the RCP26 scenario involves aggressive decarbonization, causing
radiative forcing to peak at approximately 3 W/m2 around 2050 and to decline to approximately 2.6 W/m2 at the end
of the twenty-first century.

7. Meinshausen et al. (2011), https://www.pik-potsdam.de/∼mmalte/rcps/.
8. The original formulation of DICE hides this similarity somewhat, as it absorbs the time-step of the climate part

in the coefficients of the equations. We offer a more transparent formulation where the time-step is explicitly exposed,
which allows us to directly use coefficients from Geoffroy et al. (2013) that are already calibrated to match the CMIP5
results.
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6 REVIEW OF ECONOMIC STUDIES

using our full-blown calibrations of extreme climate models. In this simple partial equilibrium
setting, the incorrect calibration of the CE in DICE-2016 leads to an SCC that is oversensitive
to the discount rate. This high sensitivity has important consequences for a general equilibrium
setting, where the interest rates are endogenous.

In order to investigate the economic consequences of our different calibrations in a general
equilibrium framework, we use the economic model from DICE-2016 together with our newly
calibrated versions of “CDICE” to compute the SCC and the optimal mitigation. We find that
in our re-calibrated model, when updated with respect to the MMM, the SCC and the optimal
mitigation are very similar to the values found in DICE-2016 if we take the exact same economic
parameters.9 We point out that for the BAU scenario, the temperature increases in DICE-2016 are
below those predicted by our extreme calibration, that is, CDICE-HadGEM2-ES. This finding
implies that the DICE-2016 predictions are within the range of what is considered plausible in
climate science. However, being in the plausible range is merely caused by the fact that two
different flaws in the original calibration of the temperature equations and the carbon cycle in
DICE-2016 partially offset each other. In particular, the calibration gives the wrong results for
the optimal economic response to climate change. In the optimal mitigation scenario, carbon
taxes turn out to be too low in the sense that the temperature response of DICE-2016 now falls
outside of the CMIP5 range. As a result, the model with an optimal carbon policy predicts a
higher temperature than CDICE-HadGEM2-ES.

As pointed out above, the SCC in the DICE-2016 calibration is oversensitive to the discount
rate. The role of the rate of time preference of the social planner/representative agent for the
SCC and optimal carbon taxes has been extensively documented and discussed in the literature
(see, e.g. Barrage 2018; Hänsel and Quaas 2018). While this parameter is obviously important
for the SCC, we show that a large part of the quantitative results are driven by an incorrect
calibration of the climate module in DICE-2016. Moreover, in a model with time-varying growth
rates (as DICE-2016), it is not only the rate of time preference, but also the curvature of cardinal
utility that determines the discount rates. We show that this implies that the DICE-2016 climate
calibration does not produce reliable results for important comparative statics questions.

The remainder of the paper is organized as follows. In Section 2, we briefly connect our
paper to the related literature. In Section 3, we detail our four test cases. Section 4 explains how
to re-calibrate the parameters in the climate part of DICE to produce forecasts that are consistent
with our test cases. Section 5 explores the implications of different CE calibrations for the SCC
in a simple partial equilibrium model. Subsequently, in Section 6, we use the re-calibrated DICE
model, that is, CDICE, to study the role of the climate calibration in the economic model of
DICE-2016. Section 7 concludes. In addition, for the convenience of the reader, we provide a
complete specification of the different variants of the DICE model (some of which we use in
our numerical experiments below) in the online Appendix B, including the DICE versions from
2007, 2016, as well as the re-calibration that we suggest in this paper, that is, CDICE.

2. LITERATURE

Starting with Nordhaus’ seminal work on climate change (Nordhaus 1979), a massive field of
research was spawned, including Nordhaus’ own development of the DICE model (see, e.g.
Nordhaus 2012, 2013, 2018). For example, Anderson et al. (2014) as well as Miftakhova (2018)

9. A significant difference is that the long-run temperature in DICE-2016 is substantially higher, that is, about
1◦ C, higher than in our calibration. This finding holds both for the business as usual (BAU) scenario without any
mitigation and the optimally mitigated scenario.
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Folini et al. THE CLIMATE IN CLIMATE ECONOMICS 7

conducted uncertainty quantification, whereas Cai and Lontzek (2019); Lemoine and Traeger
(2014), and Lontzek et al. (2015) added stochastic tipping points on top of the DICE-2007
model. Chang Hwang et al. (2017) performed learning about equilibrium climate sensitivity
with fat tails, whereas Popp (2004) studied endogenous growth in the DICE framework. Botzen
and van den Bergh (2012) and Michaelis and Wirths (2020) studied DICE with an alternative
damage function. The fact that DICE was criticized for a flawed climate model (in particular
by Dietz et al. 2021) puts the quantitative predictions of these contributions into a questionable
position and motivates our study. We show below that the climate model in DICE-2016 can be
re-calibrated to perform well in our tests.

Golosov et al. (2014) developed a simple CE that is at present widely used as an alternative
to the climate module of DICE (see, e.g. Hassler and Krusell 2018; Hassler et al. 2019; Kotlikoff
et al. 2021a). Due to its simplicity, the model is computationally much more tractable than DICE.
However, the simplicity of this model implies that certain stylized facts of temperature change
in response to CO2 in the atmosphere cannot be captured adequately.10 This model, therefore,
does not lend itself to our calibration strategy.11

More directly related to our paper, there have been several important contributions about
the calibration of CEs. Miftakhova et al. (2020) proposed a general emulation method for con-
structing low-dimensional approximations of complex dynamic climate models and developed
an emulator for MAGICC to approximate the impact of emissions on global temperature. Cai
et al. (2019) calibrated a spatial climate system to match four RCP scenarios and historical
data. Traeger (2014), Cai et al. (2012), and Cai and Lontzek (2019) re-calibrated the DICE CE
from a ten-year time-step (as in the DICE-2007 formulation) or five-year time step (as in the
DICE-2016 formulation) to higher frequency data. In the climate-science literature, Calel and
Stainforth (2017) discussed the physics of different climate models, including DICE. Thompson
(2018) conducted an intercomparison study of models, including DICE to assess how they were
designed from a physics point of view. Geoffroy et al. (2013) showed how two-layer energy bal-
ance models (formally identical to the temperature equations in DICE) can be used to match the
results in CMIP5. Joos et al. (2013) quantified responses to emission pulses in a carbon cycle
intercomparison project. Our analysis relies heavily on these two latter papers. In particular, we
use Geoffroy et al. (2013)’s calibration of the temperature equation and take our carbon-cycle
benchmarks from Joos et al. (2013). Our paper is closer to Dietz et al. (2021), and we compare
our contributions in more detail in the following sections.

3. A COMPREHENSIVE FRAMEWORK TO CALIBRATE THE CLIMATE IN IAMS

Naively, one would think that existing historical data suffices for calibrating and evaluating
CEs used in IAMs. However, it turns out that, broadly speaking, the signal-to-noise ratio in
that sort of data is simply too low for a reliable calibration of CEs with their focus on forc-
ing from CO2. Put differently, in observed records of annual global mean temperature, the
anthropogenic signal due to CO2 emissions comes in combination with a range of other rele-
vant effects. The change in global mean temperature over the last 150 years is not only due to

10. For example, since in Golosov et al. (2014), there is only one temperature equation that links CO2 in the
atmosphere directly to the current temperature, the temperature must decrease as soon as there are net-zero emissions
and CO2 concentration in the atmosphere decreases. We will show in Section 5.1 that the timing of warming plays an
important role for the SCC.

11. Interestingly, Dietz et al. (2021) argued that although the model in Golosov et al. (2014) is very simple,
it matches some important stylized facts that can be derived from CMIP5 data better than the original DICE-2016
calibration.
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8 REVIEW OF ECONOMIC STUDIES

changes in CO2. It also bears substantial imprints from other greenhouse gases, from aerosols of
anthropogenic or natural origins, including volcanoes, and also from land use changes (Gambhir
et al. 2017; Mengis and Damon Matthews 2020). Reliably disentangling the different contri-
butions is challenging. To illustrate, Millar and Friedlingstein (2018) estimated that from 1880
to 2015, CO2 contributed about 0.7 degrees to global warming, whereas non-CO2 agents con-
tributed about 0.3 degrees, with 5% to 95% uncertainty ranging from 0.5 to 1.5 degrees and
−0.2 to +0.4 degrees, respectively (cf. their Figure 4). Hence, we need to base our suite of
tests on historical observations, but also on the so-called third pillar of science: computational
experiments.

As detailed in the introduction, the CMIP experiments are a logical choice for this purpose.
We focus on CMIP5 in this paper—CMIP 6 is briefly discussed below. The range of models
participating in CMIP then raises the issue that for any specific CMIP experiment (or CE test),
one faces not a single benchmark, but a range of benchmarks. Given that the full range is con-
sidered plausible by climate scientists, it is important that any CE captures this model diversity
in some way. In this light, a first and primary benchmark is the MMM,12 the average of all cases
reported in CMIP5. The MMM is complemented by extreme cases bracketing the CMIP5 range.
Two extreme cases that bracket the plausible temperature response to CO2 in the atmosphere
in CMIP5 are the HadGEM2-ES model (strongly warming, ECS of 4.55 K) and the GISS-E2-R
model (weakly warming, ECS of 2.15 K) (Geoffroy et al. 2013). Two extreme cases that bracket
the amount of emitted carbon remaining in the atmosphere are MESMO and LOVECLIM, with
about 55% and 30%, respectively, of the 100 GtC test pulse mass remaining in the atmosphere
after 100 years, according to Figure 1a from Joos et al. (2013).

3.1. Choice of test cases

The choice of the four test cases outlined in the introduction, that is, two for the calibration, and
two for the evaluation of the CE, was guided by the following considerations. First, all test cases
should be widely used in the relevant climate-science literature and transparently documented.
Thus, they can easily be reproduced and compared with published results. Second, some of the
tests should be highly idealized to allow for the independent calibration of the carbon cycle and
the temperature response, respectively. Third, we want some test cases to be close to the ulti-
mately envisaged real-world applications, with gradual changes in CO2 emissions, exogenous
forcing, and associated temperature response. The proximity to real applications makes these
tests somewhat like a gold standard, but also makes them more difficult to interpret than the
highly idealized tests.

Taken together, the four test cases we propose to use may, loosely speaking, be regarded
as necessary and sufficient to answer whether an emulator is fit for purpose. They allow the
calibration and comprehensive evaluation of a CE like that in DICE, from its individual compo-
nents to real-application cases. To this end, it is crucial that highly idealized settings, which are
frequently used as benchmarks in the literature, are augmented with closer-to-reality tests. We
advocate that the same four tests may be used to examine the performance of the climate parts
of other IAMs featuring a carbon cycle and a set of temperature equations. Any climate model
that fits the CMIP5 data for the four test cases will likely provide a good fit for all emissions
paths arising in economic modeling.

12. For a recent application of the MMM in climate science, see, e.g. Beusch et al. (2020).
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3.2. Technical setup of test cases

The first of four experiments in our test suite is used to calibrate the carbon cycle. Its highly
idealized setup follows the temporal evolution of an instantaneous release of 100 Gt carbon
(GtC) to the present-day atmosphere. The said 100 GtC roughly corresponds to 10 years of
present-day CO2 emissions from fossil fuels (Quéré et al. 2018). The test requires two steps,
which we outline here. For more detailed explanations of the test and its benchmark data, we
refer to Joos et al. (2013). In a first step, the CE is used to simulate the evolution of the climate
from its 1850 equilibrium to 2015, using as input historical carbon emissions from 1850 to
2015. The simulation is then continued from 2015 onward, with annual carbon emissions being
iteratively determined to keep the atmospheric CO2 concentration constant at the value of the
year 2015. These emissions are then used in a second simulation that starts in 2015, but now
with an additional, instantaneous pulse of 100 GtC to the atmosphere. Changes in atmospheric
CO2 are then taken as the difference between this second and the first simulation. The test is
used to calibrate the time scales and rates at which the atmospheric CO2 concentration decays
in the wake of instantaneous carbon release to the atmosphere.13

The second test case in our proposed framework is used to calibrate the amplitude and time
scales of a given emulator’s temperature response, that is, how fast and how strongly the global
mean temperature warms in response to a sudden quadrupling of CO2.14 Starting from pre-
industrial equilibrium conditions, that is, in the year 1850, with atmospheric CO2 at 285 parts per
million (ppm), the atmospheric CO2 concentration is instantaneously quadrupled, and the change
in temperature as a function of time is examined. The related benchmark data are anchored in
CMIP5 and adopted from Geoffroy et al. (2013).

The third test case and its benchmark data come directly from CMIP5: starting in 1850 at
pre-industrial levels, the atmospheric CO2 concentration gradually increases from 285 ppm CO2
at 1% per year until quadrupling after 140 years. It is used to evaluate the TCR of the CE in
comparison with the CMPI5 values of TCR. The test is still relatively simple, as it involves
the temperature part of the CE solely, but not the carbon cycle. In other words, it uses CO2
concentrations as input, not emissions. It involves forcing only from CO2. The change in CO2
concentration is not an instantaneous step function, but is gradual in time. The test thus examines
a situation where the temperature response time scales overlap with an additional time scale
associated with the gradually increasing forcing from CO2.

The fourth test case is close to what DICE, or some other IAM, is expected to cope with in
real applications: the CMIP5 simulations for the historical period and future RCPs for four dif-
ferent forcing levels of 2.6 W/m2, 4.5 W/m2, 6.0 W/m2, and 8.5 W/m2 by 2100 (RCP26, RCP45,
RCP60, RCP85). The input data consist of either prescribed atmospheric CO2 concentrations or
CO2 emissions (Meinshausen et al. 2011, http://www.pik-potsdam.de/∼mmalte/rcps/) as illus-
trated in the left and middle panel of Figure 1. The former case tests only the temperature
response to gradually changing CO2 concentrations. The latter case tests the full climate model
of the CE, including the carbon cycle. In this test case, it is necessary to make an assumption on
the non-CO2, exogenous radiative forcing FEX

t , which in the actual CMIP simulations is mod-
eled in great detail. In the online Appendix C, we show how this choice affects the quantitative
results of the full model. Here, we assume FEX

t = 0.3 · FCO2
t , that is, proportional to the forcing

from CO2 alone (FCO2
t ) and resulting in a total radiative forcing, Ft = FCO2

t + FEX
t , which is

13. Depending on the concrete formulation of the CE’s carbon cycle, the decay of atmospheric CO2 may result
in increasing CO2 concentrations in other carbon reservoirs, notably ocean or land.

14. Note that while the test described here applies to any emulator, it will in particular target equations (4) and
(5) of the DICE-2016 model (cf. Section 4).
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FIGURE 1
Illustration of CMIP5 historical and future evolution (RCP26, RCP45, RCP60, and RCP85 scenarios, shown in blue,

green, yellow, and red), from 1850 to 2100, of prescribed CO2 emissions (left, in GtC per year), alternatively
prescribed CO2 concentrations (middle, in ppm CO2), and the forcing derived from prescribed CO2 concentrations

(right, in W/m2)

Notes: The total forcing Ft (solid lines) is decomposed into forcing from CO2 (F
CO2
t , dashed lines) and non-CO2 forcing assumed as

FEX
t = 0.3 · F

CO2
t (dotted lines)

30% larger than from CO2 alone (cf. Section 4.1). This is in line with estimates for the radiative
forcing in 2011 with respect to pre-industrial times (see, e.g. Climate Change 2014 Synthesis
Report IPCC 2014; Gambhir et al. 2017) and with estimates for the different RCPs in 2100:
26% (RCP26), 33% (RCP45), 32% (RCP60), 35% (RCP85), where the total forcing comes from
the scenario and the CO2 forcing is computed from concentrations given in Meinshausen et al.
(2011); a base concentration of 285 ppm CO2, and F2XCO2 = 3.68 W/m2. An illustration of the
temporal evolution of the different forcings is given in Figure 1, right panel. Note that estimates
for the forcing from non-CO2 GHGs by MacDougall et al. (2013) (their Figure 6) show more
temporal structure than FEX

t . Additionally, the assumption of strict proportionality between CO2
and non-CO2 forcings is subject to debate in climate sciences, especially in the context of strong
mitigation scenarios (see, e.g. Mengis and Damon Matthews 2020). Benchmark data for the evo-
lution of atmospheric temperature are taken directly from the CMIP5 archive. The proximity to
real applications makes this test difficult to interpret, yet it is a key test that CEs in economic
models should pass.

3.3. Metric for performance evaluation

The choice of a metric to assess the calibration and subsequent evaluation of a CE is not straight-
forward. The basic reason lies in the design of the CE, in its reduced functional form, and the
limited number of free parameters as compared to ESMs, which capture only some aspects of
the benchmark cases used for calibration and evaluation. This also implies that the choice of
metric may depend on the concrete form of the CE, the simplicity or complexity of its carbon
cycle, and temperature equations. If the CE explicitly covers further elements, like, for example,
methane, then not only the metric but also the benchmarks for calibration and evaluation may
need adaptation.

Focusing on simple CEs, like that in DICE, one prominent difference with respect to ESMs
concerns the response time scales upon perturbation: an ESM features a whole range of response
time scales, whereas the CE only a few, for example, two in the case of DICE-2016. Further-
more, an ESM explicitly covers a range of forcings; the CE explicitly covers only CO2 via its
carbon cycle, while any other forcings are included in a more or less ad hoc fashion. The tem-
perature may affect the carbon cycle in an ESM, but not in the simple CE considered here. A
comprehensive discussion of why to favor any particular metric in view of these issues is beyond
the scope of the present paper. Therefore, we limit ourselves to a short statement of what we did
and why.
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We calibrate the carbon cycle of a CE via the response to an instantaneous 100 GtC pulse to
the atmosphere. The comparison is performed against benchmark data from Joos et al. (2013),
using the maximum norm over a time range of 100 years after the pulse. This choice of metric
favors solutions, that is, calibrations that remain close to the benchmark data at all times over a
time scale of interest in an economic context. The calibration of the temperature equations does
not require any metric because their functional form is identical to the benchmark data from
Geoffroy et al. (2013). Therefore, we can just adopt parameter values from the benchmark data.

We evaluate a calibrated CE first with regard to TCR, and we expose the CE to the corre-
sponding test case from climate science, where TCR is defined as the change in global mean
temperature after 70 years (and after 140 years) when the atmospheric CO2 concentration
steadily increases from 1850 onward at a rate of 1% per year. We measure the performance
of the CE with respect to CMIP5 models by comparing the TCR. Finally, we evaluate the per-
formance of the calibrated CE with regard to climate projections and historical simulation data
from CMIP5. Here, we explicitly renounce using a specific metric for mainly two reasons: the
CMIP5 models span a range of plausible climates, and they explicitly include non-CO2 forcings
that depend on the projection (RCP26, RCP45, or RCP85) and are included in the CE only in an
ad hoc fashion. We consider the CE fit for purpose if a visual inspection shows that its climate in
terms of atmospheric CO2 concentration and the global mean temperature falls within the range
of CMIP5 models.

3.4. CMIP5 serves the purpose, no need for CMIP6

Throughout this study, we use data from CMIP5 or studies relying on such data, notably Geof-
froy et al. (2013) or Joos et al. (2013). We argue in the following that for the purpose at
hand—calibration and testing of a simple CE—the CMIP5 database is sufficient; there is no
need to consider the more recent CMIP6 data.

Starting with the calibration of the CE’s carbon cycle, we note that the benchmark data from
Joos et al. (2013) combine models that already span a rather wide range. Data from a more
recent study (Jeltsch-Thömmes and Joos 2020) examining the same test case find a slightly
faster decay of atmospheric CO2 in the wake of the 100 GtC pulse (compare Figure 1 of both
papers), yet well within the range of Joos et al. (2013). Similarly robust is the benchmark data
from Geoffroy et al. (2013), used for calibrating the temperature response of the CEs. Using
the same two-layer energy balance model and fitting procedure as in Geoffroy et al. (2013), but
applied to 4xCO2 data from eight CMIP6 models, Jackson et al. (2022) found parameter values
in line with Geoffroy et al. (2013), the MMM ±1σ range overlap (compare Tables 3 and 4 in
Geoffroy et al. (2013) with Table S2 in the supplementary material in Jackson et al. 2022). One
may worry that the larger range of the ECS reported in CMIP6, notably the higher ECS of some
models (e.g. Zelinka et al. 2020), implies a too conservative ECS range in CMIP5 (bracketed
here by the models GISS-E2-R and HadGEM2-ES). However, Tokarska et al. (2020) showed
that the CMIP6 range is reduced considerably, becoming largely consistent again with CMIP5 if
observational data are used to constrain the models.

Likewise, we see no necessity to use CMIP6 instead of CMIP5 when testing the calibrated
CE against two more test cases. Warming in the “1% per year atmospheric CO2 increase” experi-
ment is slightly stronger in CMIP6 as compared to CMIP5, the MMM temperature across eleven
models being around 10% higher after 140 years (Fredriksen et al. 2023, Supplementary Figure
S7), while the range of CMIP5 and CMIP6 models strongly overlaps. Arora et al. (2020) exam-
ined fully coupled simulations of the “1% year atmospheric CO2” test case, finding a MMM
warming after 140 years (quadrupling of atmospheric CO2 concentration) by 4.87◦ C in CMIP5
and 4.74◦ C in CMIP6, that is, a difference of less than 3%.
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Testing the CE against future scenarios, we note that a subset of the shared socioeconomic
pathways (SSPs) in CMIP6 were designed similarly to the RCPs of CMIP5 in order to provide
continuity. Comparing the simulated temperature evolution for corresponding RCPs and SSPs
using reduced complexity models, Nicholls et al. (2020) found that global mean temperature
evolution essentially falls on top of each other (their Figure 3). Tebaldi et al. (2021) found that
global mean temperature change in the CMIP5 RCPs falls within the range of corresponding
SSPs in CMIP6. They elaborated on a number of reasons for the slightly wider range in CMIP6
(including differences, for example, in assumed future aerosol forcing, or methane emissions)
and more generally note that CMIP5 RCPs followed a more “middle-of-the-road” pollution
policy path. We refer the interested reader to their original work or the paper by Fredriksen et al.
(2023) for more detailed information on CMIP5 versus CMIP6. With regard to our purpose
here—the calibration and testing of a simple CE—the above publications corroborate that no
essential changes happened between CMIP5 and CMIP6. We take this as an argument to use
the well-prepared CMIP5-based data in Joos et al. (2013) and Geoffroy et al. (2013) to calibrate
a CE’s carbon cycle and temperature response, respectively. Subsequent further testing of the
calibrated CE may then be done against either CMIP5 RCP or CMIP6 SSP data.

4. CDICE—RE-CALIBRATING THE CLIMATE OF DICE

So far, we put forward our suite of four test cases: one test to calibrate the carbon cycle of the
CE, one test case to calibrate the temperature equation of the CE, and two test cases to examine
emerging properties of the calibrated CE, notably its performance under gradually changing
conditions in terms of CO2 and non-CO2 forcings. We claim that, taken together, these tests are
necessary and sufficient to transparently evaluate and, if needed, re-calibrate the CE of an IAM,
which is used in an economic context.

In this section, we illustrate our claim with the example of the climate module of the seminal
DICE-2016 model. We choose DICE-2016 as an example because it is widely used in the IAM
modeling community and because it is known to be flawed (Dietz et al. 2021). We re-examine
these flaws in the light of our four test cases and present an improved version, CDICE, that
has the same functional form as DICE-2016 but is fully re-calibrated. We go beyond the work
of Dietz et al. (2021) in three essential points: (i) while Dietz et al. (2021) use one test, the
100 GtC pulse, to evaluate the CE, we stress that it is crucial to separately examine each part of
the CE, carbon cycle, and temperature equations; (ii) we provide corresponding test setups and
show how they can be used to calibrate, and not only to examine a CE; (iii) we demonstrate that
even a simple CE like that in DICE is fit for purpose if properly calibrated in this way.

This section is structured as follows: First, we lay down in Section 4.1 the fundamental build-
ing blocks of DICE’s CE, its carbon cycle, and temperature equations, along with the commonly
used calibration of DICE-2016. Next, we demonstrate in Sections 4.2, 4.3, 4.4, and 4.5 how our
battery of tests can be used to systematically test and re-calibrate DICE-2016. Finally, a critical
synthesis of our learning is provided in Section 4.6. A summary of all CDICE model parameters
is given in Table 1 in online Appendix A.

4.1. Model equations

The climate model in DICE-2016 translates carbon emissions from the model’s economic side
into atmospheric CO2 concentrations (i.e. the carbon cycle; cf. Section 4.1) and, subsequently,
into a global mean temperature change (i.e. the temperature equations; cf. Section 4.1), which
then feeds back into the part of the model that represents the economic side of the IAM. Thus,
the carbon cycle affects temperature, but not vice versa.
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The carbon cycle is a linear three-box model, where the three carbon reservoirs represent the
atmosphere (AT), the upper ocean (UO), and the lower ocean (LO), with the respective carbon
masses M = (MAT,MUO,MLO). Carbon can be exchanged between the atmosphere and upper
ocean and between the upper and lower ocean, but not directly between the atmosphere and
lower ocean. The global mean temperature is modeled via a system of two ordinary differential
equations that couple two heat reservoirs, that is, the atmosphere, including the upper ocean,
and the lower ocean, T = (T AT, T LO). The climate is anchored at an assumed pre-industrial
equilibrium state, MEQ and TEQ. Climate change is quantified as deviations from this equilibrium
state. In an economic context, time integration in DICE-2016 typically does not start at pre-
industrial times, but at present day, for example, in the year 2015. A corresponding initial state
MINI and TINI must be determined so as to be in line with carbon emissions since pre-industrial
times and the equations of the CE (cf. Section 4.1).

4.1.1. Carbon cycle. The carbon cycle model (see, e.g. Keeling 1973) formally reads

Mt+1 = (I +�t · B) · Mt +�t · Et , (1)

with I being the identity matrix, �t being the time-step in years, and Mt = (MAT
t ,MUO

t ,MLO
t )

representing the carbon mass at time t in three reservoirs. The carbon emissions per year to the
atmosphere, as well as to the ocean,15 are specified via Et . The time-constant matrix B,

B =
⎛
⎝

b11 b21 b31
b12 b22 b32
b13 b23 b33

⎞
⎠ , (2)

describes the mass transfer among reservoirs and has units “mass fraction per time-step.”
Assuming that mass conservation holds, that is,

∑
i

b ji = 0 for j = 1, 2, 3, (3)

and that there is no direct mass transfer between AT and LO (implying that b13 = b31 = 0),
leaves four free parameters in matrix B that are used to calibrate the carbon cycle. In DICE,
the said parameters are chosen as the transfer coefficients from AT to UO (b12) and from UO
to LO (b23), as well as the equilibrium carbon mass ratios at pre-industrial times between the
reservoirs, r1 = MAT

EQ/MUO
EQ and r2 = MUO

EQ /MLO
EQ .

The remaining matrix entries bi j are then given by b11 = −b12; b21 = b12 · r1; b22 = −b21 −
b23; b32 = b23 · r2; b33 = −b32. Parameter values for CDICE are given in Table 1. In DICE-2016,
the numerical values for the free parameters are given by MEQ = (588, 360, 1,720), r1 = 1.633,
r2 = 0.209, as well as b12 = 0.12 and b23 = 0.007, with a time-step of �t = 5 years being
hard-wired (absorbed) into the coefficients bi j . To alleviate this limitation of being bound to a
time-step of fixed size, the bi j in our formulation are specified in units of 1 year and are then
explicitly multiplied with a time-step. The latter thus can be freely chosen, for example, as the
time-step prescribed by the respective economic model.

15. This is an interesting option in the context of carbon dioxide removal techniques (see, e.g. Rickels et al.
2018).
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TABLE 1
Values of free parameters in the carbon cycle, original DICE-2016 (with �t = 5 years) and our proposed, different

calibrations of CDICE

Model b12 b23 MEQ

DICE-2016, 5yr 0.12 0.007 (588, 360, 1,720)
CDICE 0.054 0.0082 (607, 489, 1,281)
CDICE-MESMO 0.059 0.0080 (607, 305, 865)
CDICE-LOVECLIM 0.067 0.0095 (607, 600, 1,385)

TABLE 2
Values of the free parameters of the temperature equations for different versions of DICE: original DICE-2016 with

�t = 5 years and re-calibrated (CDICE)

Model c1 c3 c4 ECS F2XCO2 λ

DICE-2016, 5yr 0.1005 0.088 0.025 3.1 3.6813 1.19
CDICE 0.137 0.73 0.00689 3.25 3.45 1.06
CDICE-HadGEM2-ES 0.154 0.55 0.00671 4.55 2.95 0.65
CDICE-GISS-E2-R 0.213 1.16 0.00921 2.15 3.65 1.70

Notes: Also given are versions mirroring CMIP5 models with extreme ECS from Geoffroy et al. (2013), which are used
for comparison purposes. Note that λ = F2XCO2/ECS is a derived quantity.

4.1.2. Temperature. The two-layer energy balance model in DICE-2016 reads as

T AT
t+1 = T AT

t +�t · c1
(
Ft − λT AT

t − c3
(
T AT

t − T OC
t

))
, (4)

T OC
t+1 = T OC

t +�t · c4
(
T AT

t − T OC
t

)
, (5)

and thus formally corresponds to that described in Geoffroy et al. (2013). T AT
t and T OC

t denote
the temperature change with respect to pre-industrial times of the upper layer (atmosphere and
upper ocean) as well as the lower layer (deep ocean), respectively, at time-step t. The free
parameters c1, c3, c4, and λ in equations (4) and (5) are used for calibration. From a physics
perspective, they may be interpreted as a heat exchange coefficient between the upper and lower
layers, γ = c3, effective heat capacities of the upper and lower layers, C = 1/c1 and C0 = γ /c4,
and the radiative feedback parameter λ = F2XCO2/T2XCO2 , that is, the ratio of the forcing from a
doubling of CO2 to the associated temperature change, that is, the ECS. Finally, Ft denotes the
total radiative forcing from CO2, FCO2

t , and other exogenous factors, FEX
t , such as GHGs other

than CO2 and also aerosols

Ft = F2XCO2

log(MAT
t /MAT

EQ)

log(2)
+ FEX

t . (6)

In, DICE-2016, FEX
t is assumed to change linearly with time from 0.5 in the year 2015 to 1.0

in 2100. Parameter values for CDICE are given in Table 2. Parameter values in DICE-2016
are c1 = 0.1005, c3 = 0.088, c4 = 0.025, and λ = 3.6813/3.1 = 1.1875, with a time-step of
�t = 5 years formally hard wired (absorbed) into c1 and c4. To lift this issue, we provide, here
again, a generic formulation of the temperature equations such that the time-step can be chosen
freely in discrete values of 1 year, that is, 1 year, 2 years, and so forth.

4.1.3. Initialization at present day. In the context of economic models, the time inte-
gration typically does not start at pre-industrial times but rather at the present day. Corre-
sponding initial values for the carbon and temperature reservoirs used in CDICE for 2015 are
MINI = (851, 628, 1,323) and TINI = (1.10, 0.27) for the MMM case (see Section 4.5 for more
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TABLE 3
Initial conditions for the year 2015 as used in DICE-2016 and in CDICE, as well as for extreme calibrations of CDICE

with respect to the carbon cycle and/or temperature

Model MINI TINI

DICE-2016, 5yr (851, 460, 1,740) (0.85, 0.0068)
CDICE (851, 628, 1,323) (1.10, 0.27)
CDICE-HadGEM2-ES (851, 628, 1,323) (1.10, 0.27)
CDICE-GISS-E2-R (851, 628, 1,323) (1.10, 0.27)
CDICE-MESMO (851, 403, 894) (1.10, 0.27)
CDICE-LOVECLIM (850, 770, 1,444) (1.10, 0.27)
CDICE-HadGEM2-ES-MESMO (851, 403, 894) (1.10, 0.27)
CDICE-HadGEM2-ES-LOVECLIM (850, 770, 1,444) (1.10, 0.27)
CDICE-GISS-E2-R-MESMO (851, 403, 894) (1.10, 0.27)
CDICE-GISS-E2-R-LOVECLIM (850, 770, 1,444) (1.10, 0.27)

Notes: The atmospheric CO2 concentration is always 400 ppm (851 GtC). All other values result from integrating the
differently calibrated CEs from 1850 to the present day using the CMIP5 setup as described in the fourth test case.

details regarding the MMM and the alternative calibrations). Values for extreme calibrations of
CDICE are also given in Table 3.

These initial values should meet three criteria: the atmospheric carbon mass and temperature
change should be consistent with observed changes from pre-industrial to present times, and
all values should be internally consistent in that they can be obtained by integrating the CE in
time from its assumed pre-industrial equilibrium to the present. Regarding the first criterion, the
851 Gt atmospheric carbon corresponds to 400 ppm CO2, in line with measured concentrations
in 2015.16 The 1.1 K change in global mean temperature since pre-industrial times corresponds
to the 2015 centered 11-year average (years 2010 to 2020) observation-based value.17 We assert
the third criterion by integrating the CE from its 1850 equilibrium state to the present day. We use
the historical carbon emissions from CMIP5. We slightly adjust the non-CO2 forcing, by default,
at 30% of the CO2 forcing (see Section 3.2) to meet the warming target of 1.1 K by 2015. Such
an adjustment is legitimate given that from a climate science perspective, this forcing comes
with substantial uncertainty (see, e.g. Mengis and Damon Matthews 2020). From the internally
consistent time series of Mt and Tt obtained in this way, we pick that time (year) with the desired
atmospheric CO2 concentration, for example, 400 ppm, as initial conditions, MINI and TINI.

The original initialization values used in DICE-2016 are MINI = (851, 460, 1,740) and
TINI = (0.85, 0.0068). The 0.85 K change in global mean temperature tends to be on the low
side when compared to observation-based estimates.18

4.2. Atmospheric C O2 after 100 GtC pulse to the atmosphere

To evaluate and re-calibrate the carbon cycle of DICE-2016, we use the idealized test case of
an instantaneous 100 GtC pulse to the present-day atmosphere, as described in Section 3.2 and
illustrated in Figure 2. Compared to benchmark data from Joos et al. (2013) (black and gray
lines), the known deficiency of DICE-2016 (blue dashed; see, e.g. Dietz et al. 2021) is appar-
ent: DICE-2016 overestimates the fraction of the pulse remaining in the atmosphere. Retaining

16. https://www.co2levels.org.
17. http://berkeleyearth.org/global-temperature-report-for-2020.
18. http://berkeleyearth.org/global-temperature-report-for-2020.
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FIGURE 2
Fraction of an instantaneous 100 GtC pulse remaining in the atmosphere (y-axis) as a function of time (x-axis, three

different time scales from left to right)
Notes: Shown are benchmark data adapted from Joos et al. (2013) (black and gray lines, J13) and three calibrations against this data:
CDICE (red solid), which is calibrated against the MMM (black solid), and two extreme calibrations, CDICE-MESMO (red dotted) and
CDICE-LOVECLIM (red dash-dotted), which essentially capture the range of benchmark models (thin gray lines). DICE-2016 (blue
dashed) removes too little CO2 from the atmosphere compared to the benchmark data. Absolute values of pulse height and equilibrium
masses are irrelevant in DICE’s carbon cycle model (CDICE, 5,000 GtC on 1850 equilibrium masses, orange dotted), which is in contrast
to findings in J13 (dashed and dotted gray lines, see their paper for details).

the functional form of the carbon cycle, but re-calibrating the model against the MMM bench-
mark (black solid) using the maximum norm over the first 100 years after the pulse (see
Section 3.3), the new best-fit version, CDICE (red solid), performs clearly better. Full agree-
ment between CDICE and the MMM benchmark data cannot be reached because of the different
functional forms of the carbon cycle.19 Extreme calibrations against MESMO and LOVECLIM
(CDICE-MESMO, red dotted, and CDICE-LOVECLIM, dash-dotted) are also shown. They
are representative of scientifically plausible, but extreme, carbon cycles that remove CO2 very
efficiently (or inefficiently) from the atmosphere, and which we use later on in our economic
analysis.

Figure 2 also shows the functional limitation of the carbon cycle model in CDICE (or DICE
in general). The fraction of the carbon pulse remaining in the atmosphere is sensitive to neither
the pulse height nor the equilibrium state. The 100 GtC test case (red solid line) shows the same
decay as a 5,000 GtC pulse to pre-industrial equilibrium (orange dashed line). This is in contrast
with informed expectations (see, e.g. Joos et al. 2013): the pulse should decay more slowly
if it is larger, if it is applied to present day instead of pre-industrial conditions, or if climate
feedback processes are taken into account (dashed and dotted gray lines, PI and PD indicating
pre-industrial and present day, respectively, adapted from Joos et al. 2013).

The test case used here is further suited to examine sensitivities to the parameter values of
the carbon cycle (colored lines) in Figure 3, anchored at CDICE (see Table 2). As expected, the
transfer coefficient b12 between the atmosphere and the upper ocean has the largest effect on
short time scales. On intermediate time scales, up to about 50 years, assumptions about the equi-
librium masses in the upper and lower ocean start to matter. The effect of the transfer coefficient
b23 starts to have a clear effect only later on. The long-term evolution is equally dependent on
b23 and the equilibrium masses in the upper and lower ocean.

In this context, the eigenvalues (EV) of matrix B are of interest, as they relate to the decay
or the half-life time scales (τ = �t · ln(0.5)/ ln(EV )) of an instantaneous perturbation (carbon
emission). One EV equals 1 and corresponds to the equilibrium solution. The other two EVs are
(1 + g ± h)/2, with g = 1 − b12 · (1 + r1)− b23 · (1 + r2) and h = ((1 − g)2 − 4 f )1/2, where

19. The benchmark data in Joos et al. (2013) have three characteristic decay time scales, whereas DICE with its
three carbon reservoirs has only two.
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FIGURE 3
Parameter sensitivities (thin colored lines) of the carbon cycle, anchored at CDICE (red), illustrated at the example of

an instantaneous 100 GtC pulse to the atmosphere
Notes: Shown is the fraction of the pulse remaining in the atmosphere (y-axis) as a function of time (x-axis, three different time scales
from left to right). Benchmark data from Joos et al. (2013) are shown in black and gray.

f = b12 · b23 · (1 + r2(1 + r1)). Associated numerical values for DICE-2016 are 0.6796 and
0.9959, corresponding to half-life times of 9 and 851 years. For our CDICE calibration, we
arrive at EVs of 0.8742 and 0.9933, corresponding to half-life times of 5 and 102 years. This
highlights the difference between our carbon-cycle calibration and that in DICE-2016.

4.3. Temperature evolution upon quadrupling of C O2 concentration

Our second test case, namely the temperature response to an instantaneous quadrupling of the
atmospheric CO2 concentration (cf. Section 3.2), allows for an evaluation and re-calibration of
the temperature equations of the CE under consideration. In principle, a metric would again be
needed for this purpose (see Section 3.3). However, as CDICE (or DICE in general) and the
benchmark data from Geoffroy et al. (2013) share the same functional form (cf. Section 4.1), a
re-calibration is trivial: we simply adopt the parameter values already fitted to the CMIP5 data
by Geoffroy et al. (2013). Specifically, we obtain CDICE using their fit to the multi-model mean
and two extreme models, that is, CDICE-HadGEM2-ES and CDICE-GISS-E2-R. As explained
above, these extreme cases play an important role in our economic analysis below (cf. Sections
5 and 6). Table 2 summarizes the relevant coefficients for these alternative calibrations.

The test confirms previous findings that DICE-2016 warms too slowly compared to any
CMIP5 model (dashed blue versus solid gray lines in Figure 4). All the CMIP5 models (solid
gray lines) agree that warming occurs rapidly. Meanwhile, their level of warming differs by
a factor of roughly two, in line with their differing ECS, given in Table 2. The overly slow
warming in DICE-2016 finds confirmation via formal expressions for the characteristic fast and
slow response time scales associated with equations (4) and (5) (see Geoffroy et al. 2013, their
Table 1), which yield numerical values of 4 and 249 years for the CMIP5 multi-model mean in
Geoffroy et al. (2013), but 40 and 219 years for DICE-2016.

The test discussed here is further suited to shed some light on the role of the different param-
eter values in the temperature equations of CDICE, as illustrated in Figure 5. How quickly the
temperature responds to an increase in atmospheric CO2 is mainly governed by the heat capac-
ity of the upper ocean via the parameter c1 (left panel, yellow and brown dashed lines), which,
in turn, does not affect the mid-and long-term absolute warming (beyond roughly 20 years, mid-
dle and right panel). As expected, the very long-term warming is set by the ECS (right panel,
pink and violet dash-dotted lines). The track toward long-term equilibrium across intermediate
time scales and levels of warming depends on the energy exchange between the upper and lower
ocean, via the choice of c3 (solid green lines, after roughly four years), and on the heat capacity
of the deep ocean, entering in the form of c4 (cyan dotted lines, after roughly 20 years).
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FIGURE 4
Temperature response to instantaneous quadrupling of atmospheric CO2 with respect to pre-industrial values on time

scales of 20 years (left), 200 years (middle), and 1,000 years (right)
Notes: Parameters in CDICE (red solid) can be chosen such as to exactly reproduce the calibration target, the CMIP5 multi-model mean
(black solid, G13-MMM). Also shown are two extreme ECS calibrations (solid green and light blue, CDICE-HadGEM2-ES and CDICE-
GISS-E2-R). In DICE-2016 (dashed blue, 5-year time-step), temperature increase is too slow compared to any CMIP5 model (thin gray
lines, G13, from Geoffroy et al. 2013).

FIGURE 5
Parameter sensitivity of the temperature equations in DICE, illustrated at the example of an instantaneous quadrupling

of the CO2 concentration with respect to pre-industrial values
Notes: Shown is warming (y-axis) as a function of time (x-axis) for different time scales (from left to right). Parameters are varied one
by one with respect to the CMIP5 multi-model mean from Geoffroy et al. (2013) (black solid, G13-MMM) and its adaptation in CDICE
(red solid).

In summary, the test case demonstrates that the temperature equations in DICE-2016 can
be re-calibrated to reach general agreement with corresponding results from CMIP5. Specific
CMIP5 models or the multi-model mean as given in Geoffroy et al. (2013) can be recovered
precisely by appropriate parameter choice.

4.4. Temperature evolution as atmospheric C O2 increases at 1% per year

The purpose of the third test is to evaluate a CE’s TCR. In contrast, the first two test cases
primarily aim at calibrating a CE. The TCR is of interest as a measure of how the (model) climate
responds to steadily changing conditions. From the point of view of a CE, one may also say that
the TCR examines the CE’s performance upon a series of perturbations; not a single one as in
the tests used for calibration of the CE. Although still highly idealized, this test is thus closer to
reality. Consequently, TCR is often considered a better measure to evaluate the performance of
a climate model than ECS, which assumes the climate system to have equilibrated. A reasonable
TCR is a necessary condition for any CE but, as we shall see, not a sufficient one.

Of the test results shown in Figure 6, two aspects deserve highlighting. First, all variants of
DICE (shown in different color coding) are compatible with the CMIP5 data (black and gray
lines). The temperature evolution of DICE-2016 (blue dashed lines) now lies within the range of
CMIP5 models (solid gray lines). However, the warming is still slightly slower than the CMIP5
multi-model mean (black solid) during the first few decades. CDICE (solid red) warms slightly
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FIGURE 6
Temperature response (y-axis) to transient, 1% per year, increase of the CO2 concentration as a function of years

(x-axis) from 1850 onward
Notes: The CO2 concentration doubles within 70 years (left panel), and associated warming levels correspond, by definition, to the TCR
of the model. CO2 quadruples within 140 years (right panel), and TCR roughly doubles. DICE-2016 (dashed blue), our new version
CDICE (solid red), as well as its extreme scaling variants (solid cyan and green), are all compatible with CMIP5 models and their TCR
(individual models and multi-model mean, solid gray and black, respectively).

faster than the CMIP5 multi-model mean. Variants of CDICE with extreme ECS (green and
cyan lines, see Table 2 for parameters) indeed bracket the individual CMIP5 models. Second, the
transient warming of the models remains clearly below their ECS, even after the quadrupling of
CO2 after 140 years. The TCR of the models is between 1.3 K and 2.3 K across CMIP5 models
(gray lines in Figure 6). Associated values for ECS are roughly 50% to 100% larger, ranging
between 2.05 K and 4.55 K (see Table 2). Upon the quadrupling of CO2 after 140 years, ECS
still exceeds the transient temperature change by about 40% to 70%.

Contrasting the above findings with those from Section 4.3 demonstrates that the model
performance is highly sensitive to the concrete test. In particular, the striking under-performance
of DICE-2016 in the idealized CO2 quadrupling test case is hardly detectable if CO2 increases
gradually at a rate of 1% per year instead. The decent performance in terms of TCR may seem to
come as a relief given the ample amount of existing literature using DICE-2016. This impression
is, however, deceptive, as will be further elaborated on in Section 6.

4.5. CMIP5 historical and RCP evolution as simulated by DICE

Our fourth test was chosen to be as close as possible to real applications, that is, a necessary gold
standard test any CE should pass: the CMIP5 simulations for historical and future representative
concentration pathways (RCP26, RCP45, RCP60, and RCP85, from top to bottom in Figure 7).
Compared to the other three tests, this test features some additional hurdles. First, the entire CE
is examined, that is, the carbon cycle combined with the temperature equations. Second, strong
mitigation scenarios are considered that test a CE’s ability to capture a regime transition from,
basically, emission-dominated to response-dominated. Third, non-CO2 forcings must be taken
into account. They form part of the CMIP5 simulations and the real-world alike and thus must
be incorporated and examined in the context of any CE. To facilitate the interpretation of results,
we separately examine in Figure 7 CO2 concentrations due to changing carbon emissions (left
column, performance of carbon cycle), the temperature in response to changing CO2 concen-
trations (middle column, performance of temperature equations), and finally, temperature as a
function of carbon emissions (right column, performance of full CE).

The CMIP5 data (gray and black lines in Figure 7) provide a benchmark range: depend-
ing on the model, warming by 2100 is between 1 K and 2.5 K for RCP26 and between
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20 REVIEW OF ECONOMIC STUDIES

FIGURE 7
Comparison of DICE with historical and future (years 1850 to 2100, scenarios RCP26, RCP45, RCP60, and RCP85,

from top to bottom) CMIP5 data
Notes: Shown are atmospheric CO2 concentrations (left) as prescribed in CMIP5 (solid black, with dotted lines indicating ±5% and
±20% ranges) and as computed from CO2 emissions with DICE-2016 (dashed blue), CDICE (solid red), as well as CDICE-MESMO
and CDICE-LOVECLIM (dotted and dash-dotted red). Also shown is temperature evolution based on prescribed CO2 concentrations
(middle) and based on emissions (right) for DICE-2016, CDICE, and variants of CDICE.

3 K and over 6 K for RCP85. The range exists, although the models feed on prescribed
concentrations, not emissions. A subset of CMIP5 models recomputed the RCP85 sce-
nario based on prescribed emissions. By 2100, their CO2 concentrations lie in a range
from 800 ppm to 1,150 ppm, or within about 20% of the CMIP5 prescribed value of
935 ppm, and warming ranges roughly from 2.7 K to 6.5 K (Figure 12.36 in the Inter-
governmental Panel on Climate Change and Intergovernmental Panel on Climate Change
2015). The episodic cooling apparent in Figure 7, which is due to significant volcanic eruptions
such as Mt. Pinatubo in 1991, is a reminder that the temperature evolution in CMIP5 encapsu-
lates a whole range of forcings. The decreasing CO2 concentrations and temperatures in RCP26
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are of particular interest as they allow us to benchmark the CE in the context of mitigation
scenarios.

Looking at the carbon cycle (left column in Figure 7), we find that CO2 concentrations mod-
eled by the DICE family are mostly within 20% of those prescribed by CMIP5 (black dotted
lines), thus within the range of emission-based CMIP5 simulations (see above). Concentrations
are always the highest for DICE-2016, followed by CDICE-MESMO, CDICE, and CDICE-
LOVECLIM, in line with calibration (CDICE family) and evaluation (DICE-2016) against the
100 GtC pulse test (see Section 4.2). Looking at the different scenarios, the strong mitigation
scenario RCP26 has concentrations prescribed in CMIP5 (black solid) that are lower than in any
model of the DICE family. The situation changes as one moves to RCP45 and RCP85, where
toward the end of the century (the year 2100), concentrations in CDICE are even lower than
those prescribed in CMIP5. The behavior may indicate a dependence of the carbon cycle on the
scenario (strong mitigation versus continued strong emission) either on the side of the DICE
model family or on the side of CMIP5. A dedicated analysis is beyond the scope of the present
paper.

Turning to the temperature response to CO2 concentrations as prescribed in CMIP5 (middle
column), the curves for the different versions of CDICE echo corresponding calibrations (see
Section 4.3). In particular, CDICE (red solid) falls on top of the CMIP5 multi-model mean (black
solid) independent of the RCP scenario considered. This is remarkable in several respects. The
temperature equations in CDICE were calibrated against one perturbation (instantaneous qua-
drupling of CO2), whereas CO2 keeps constantly changing here. The temperature evolution is
well captured even in RCP26 after 2050, when CO2 concentrations decrease again. Finally, the
data by Geoffroy et al. (2013), used to calibrate CDICE, incorporates only a subset of CMIP5
models.20 DICE-2016 (blue dashed line) features relatively high temperatures under strong mit-
igation (RCP26) and rather low temperatures in the strong forcing RCP85 scenario. One reason
could be that the slow temperature response of DICE-2016 to an instantaneous increase in CO2
concentrations turns into a lagging response upon gradually changing CO2. Another reason
could be the non-CO2 forcing (see Section 4.1), which may be too strong in the RCP26 sce-
nario, but too weak in the RCP85 scenario. For CDICE, the (assumed) non-CO2 forcing (dotted
orange line) contributes around 0.5- to 1-degree warming by 2100.

The performance of the entire CE (Figure 7, right column) encapsulates the features
just described. Some combinations of the independently calibrated carbon cycle and tem-
perature equations fall outside the range of CMIP5 models (thin gray lines). For example,
CDICE-HadGEM2-ES-MESMO and CDICE-HadGEM2-ES are too warm in RCP26, whereas
CDICE-GISS-E2-R-LOVECLIME tends to be on the cool side in RCP85. The relative impor-
tance of the carbon cycle and temperature response depends on the forcing scenario. Upon
strong forcing, like RCP85, temperatures differ mainly because of the different ECS calibra-
tions (cyan, red, and green curves). In contrast, the calibration of the carbon cycle plays a minor
role (dotted, solid, and dash-dotted curves). For RCP26, CEs that combine high ECS with effi-
cient removal of carbon emissions (CDICE-HadGEM2-ES-LOVECLIM, cyan dash-dotted) have
a similar temperature evolution as CEs combining inefficient carbon removal with an interme-
diate ECS (CDICE-MESMO, red dotted). In Section 6, we examine the degree to which this
degeneracy persists within an economic context.

In summary, CDICE falls within CMIP5 models for all future scenarios. This is not the
case for some variants of CDICE that combine extreme calibrations of the carbon cycle and
temperature equations. DICE-2016 performs better for the strong forcing scenario RCP85 than

20. Only a subset of all CMIP5 data was available when Geoffroy et al. (2013) performed their analysis.
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for the strong mitigation scenario RCP26. Concrete assumptions about the non-CO2 forcing
term, notably its strength, are demonstrated to matter for global mean temperature change.

4.6. Synthesis and lessons learned from the climate test cases

The results presented in this section show that it is important to independently calibrate the two
basic building blocks of any CE, that is, the carbon cycle and the temperature equations. In this
paper, we provide two corresponding, highly idealized test cases that are based on published
data from CMIP5. We advocate that the calibrated CE should, subsequently, be exposed to two
additional tests: one to quantify the CE’s transient climate response and the other to evaluate
the CE’s performance for realistic future scenarios, under strong forcing as well as under strong
mitigation. Associated tests are described that rely only on publicly accessible data from CMIP5.
We illustrated that DICE-2016, although failing both calibration tests, passes the two additional
tests, possibly due to compensating errors. Additionally, we demonstrated that the functional
form of the DICE family is fit for purpose: a re-calibrated version, CDICE, passes all four tests.

The CMIP5 test cases highlight the existence of a target range for both the carbon cycle and
the temperature equations. Full-fledged ESMs do not agree on global mean temperature change,
even if this change is only due to prescribed gradual changes in atmospheric CO2 concentration,
as in the 1% per year CO2 increase test case. Variants of CDICE using calibrations for the tem-
perature response that are extreme yet in line with CMIP5 have been shown to bracket the range
of CMIP5 models for all four RCPs examined. We advocate exploiting this bracketing behav-
ior in the context of economic studies as a measure of the uncertainty arising from the climate
part. The same applies with regard to the carbon cycle. We caution, however, that combining
extreme calibrations for both the carbon cycle and the temperature equations may result in an
overly extreme climate of the CE.

Non-CO2 forcings have been shown to play a prominent role and, as such, constitute another
source of uncertainty for any CE. Their assumed linear increase with time in DICE-2016 has the
advantage of being simple. Climate literature rather advocates that non-CO2 forcings amount
to about one-third of the forcing from CO2 (cf. Section 3.2); the form adopted in CDICE. It is
not obvious whether any of the two forms is clearly superior with regard to the envisaged appli-
cations; studying the interplay of climate, society, economy, and technology. Net-zero targets,
mitigation scenarios, or scenarios presenting even more heavy use of fossil fuels may affect
the mix of non-CO2 forcing agents and associated lifetimes. A more detailed description of
such developments is not desirable as it would necessitate including non-CO2 agents, reservoirs,
and processes, thereby violating the deliberately simple approach to climate taken in DICE.
Retaining a simple form, but testing for associated sensitivities, seems a more promising avenue.

Focusing again on CO2 forcings alone, the temperature part of CDICE has been shown to per-
form very well with respect to any benchmark data for prescribed CO2 concentrations. Working
with carbon emissions has turned out to be more challenging. It is difficult for CDICE to repro-
duce both high-emission and mitigation scenarios, like RCP85 and RCP26 (cf. Figure 7, left
column) equally well. The point is relevant given that DICE should be applicable to a broad range
of socio-economic scenarios, from fossil fuel dominated to mitigation and net-zero emissions.
We speculate that the issue is rooted at least in part in the availability of only two time scales (of
5 and 102 years, see Section 4.1) related to the three reservoir carbon cycle.

A reservoir-based carbon cycle model has the advantage that the total amount of carbon is
preserved. In particular, carbon leaving the atmospheric reservoir is still present in another reser-
voir, notably the ocean, in the case of DICE. From there, it may continue to play a role for the
climate system at some point in time. This capability of a reservoir-based approach is especially
interesting with regard to strong mitigation scenarios, where the amount of carbon currently
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being stored in the (upper) ocean is likely to affect the carbon uptake capability of the ocean
as emissions decline (Ridge and McKinley 2021). For the same reason, it seems questionable
whether even simpler climate models without any reservoirs—an example of such a model could
be the approximately linear relationship between cumulative carbon emissions and global mean
temperature—would be able to properly cope with strong mitigation scenarios.

In summary, the emission-based global mean temperature evolution from 1850 to 2100 as
modeled by either DICE-2016 or CDICE lies, despite the models’ simple functional form, well
within the range of CMIP5 results for most RCPs. For DICE-2016, this finding is noteworthy as
the model, in contrast to CDICE, clearly fails more idealized tests (instantaneous quadrupling
of CO2 and 100 GtC pulse). Moreover, it is deceiving, as compensating errors play an important
role in DICE-2016. Noteworthy also is the challenge posed to either DICE-2016 or CDICE by
the strong mitigation scenario RCP26: CDICE struggles, and DICE-2016 clearly fails and clearly
warms far too much toward 2100. As already noted by Traeger (2014), such strong mitigation
scenarios excessively challenge the models’ functional form.

5. THE SOCIAL COST OF CARBON IN PARTIAL EQUILIBRIUM

In standard economic models, climate change is treated as an externality, and, going back all
the way to the work of Pigou (1920), it is well known that Pareto efficiency can be restored
by adding the marginal value of the externality to the market price of carbon. To reach this
goal, IAMs compute the net present value of all future damages caused by the emission of an
additional unit of carbon at some date t. The effect of these extra emissions on damages depends
on the calibration of the damage function and the path of emissions. Computing the net present
value of the damages requires knowledge of all future interest rates. A change in the market
price of carbon will change the path of emissions and of interest rates. Consequently, one has to
impose an economic model with many assumptions to obtain an accurate estimate of the SCC.
However, one can gain important insights by examining the future path of damages caused by a
pulse of emissions for a given RCP emissions scenario. One can then assume constant interest
and growth rates and make general statements about the SCC. As we will show in Section 5.1,
in the BAU case of the DICE-2016 model, the effects of the climate model on emissions and
the interest rates are indeed tiny (of course, the effects on optimal abatement and mitigated
emissions are very large). The social cost of carbon is defined for each date t. As it turns out, if
one assumes constant interest rates, the SCC relative to output is relatively constant across the
next 50 years, and we, therefore, focus on the somewhat arbitrary date 2020 for reporting the
SCC in this section.

In this, and the subsequent Section 6, we assume that exogenous forcing, FEX
t , changes

linearly with time from 0.5 in the year 2015 to 1.0 in 2100, that is, as specified in DICE-2016
(cf. equation (6)). This measure allows us to compare the impact of our CDICE calibration with
DICE-2016 consistently. However, to be fully in line with state-of-the-art climate science, it
might be better to assume FEX

t = 0.3 · FCO2
t (see, e.g. Climate Change 2014 Synthesis Report

IPCC 2014; Gambhir et al. 2017). In the online Appendix C, we show how such change in the
full model affects our quantitative results.

Following the majority of the economic literature on climate change, we assume that the
temperature influences the economic activity via a damage function �(·) that multiplies total
output Y Gross

t (·) at time t. Given a constant interest rate r, and a constant growth rate of output,
g, the present value of damages at some future date t is given by ( 1+g

1+r )
t�(TAT,t ). In this section,

we take 1+r
1+g as given, and refer to it simply as the “g-adjusted interest rate.” Note that output

growth can come from population growth as well as total factor productivity (TFP) growth, and
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FIGURE 8
SCC for different CDICE calibrations, emission scenarios, and a quadratic damage function

it is likely not to be constant over the next 300 years. Real risk-free rates and returns to capital
certainly vary over the business cycle, but also might change in the long term (see, e.g. Bauer
and Rudebusch 2021).

The damage functions used in DICE-2016, but also in Hänsel et al. (2020) and Howard and
Sterner (2017) among others, all assume the following quadratic functional form:

�(TAT,t ) = ψ2 · (TAT,t )
2. (7)

Since, in this section, we only consider the SCC relative to the CDICE calibration (both the
temperature equations as well as the carbon cycle calibrated to the MMM), the value of the
parameter ψ2 is irrelevant. Of course, ψ2 matters for the absolute value of the SCC and for
optimal abatement, but not for ratios of the SCC for different calibrations. However, as we show,
the functional form is very important, and higher-order terms (as, for instance, discussed in
Weitzman 2012) can make a significant difference in the effect of climate model uncertainty on
the SCC.

5.1. Different climate calibrations and the SCC

Figure 8 displays the SCC under two different RCP emission scenarios, that is, RCP85 with
very high emissions and RCP26 with very low emissions, and four different calibrations of our
CE. In all the cases in the figure, the social cost of carbon is relative to the CDICE MMM
social cost of carbon for RCP26. We consider the MMM for both the temperature equations and
the carbon cycle (denoted by CDICE). Furthermore, we also look at HadGEM2-ES and GISS-
E2-R as alternative temperature calibrations, as well as MESMO as an alternative carbon-cycle
calibration. As we vary the growth-adjusted interest rate from 0.5% to 4%, the SCC for the RCP
2.6 scenario with the basic CDICE model (both temperature equation and carbon cycle calibrated
to the MMM) is always normalized to one. All models considered in this figure are a calibration
of CDICE; for simplicity, the term CDICE is often omitted in the legends in Figures 8 and 9.
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(a) (b)

FIGURE 9
SCC for alternative damage functions: (a) linear damages and (b) cubic damages

There are four key takeaways from this stylized exercise. First, model uncertainty for the
temperature equation can lead to three to five times higher SCC for very pessimistic scenarios
as opposed to the most optimistic scenario. Second, the effect of an extreme carbon cycle is
much smaller compared to the temperature block (it increases the SCC by about 20% relative to
the MMM), but the combined effect of a pessimistic carbon cycle and a pessimistic temperature
scenario can be very large. Third, the relative uncertainty introduced by climate model uncer-
tainty does not change very much with discounting, at least for g-adjusted interest rates above
2%. Fourth, the SCC does not change very much with an alternative to the emissions scenario.
It is uniformly higher when the emissions are very large, but relative to the effect of the climate
model uncertainty and the discount factor, the changes are small.

It is important to note that the last two observations depend crucially on the assumption that
damages are quadratic (cf. equation (7)). Typically, for any strictly convex cost function, one
would expect that marginal costs increase in quantity and that, therefore, the SCC is substantially
higher for RCP85 than for RCP26. However, the marginal costs of emissions also include the
non-linear effects of emissions on the temperature. The concavity in the forcing equation (6)
counters the convexity of damages, and thus, the overall shape of the cost function is an unknown
a priori.

This point is further illustrated in Figure 9, where we show the analog of Figure 8 for a
linear damage function (left panel) as well as a cubic damage function of the form �(TAT,t ) =
ψ3 · (TAT,t )

3 (right panel).
For linear damages, the marginal costs decrease in emissions. For high-emission scenarios,

the SCC is lower than for low-emission scenarios. The overall effect of climate model uncer-
tainty is significantly smaller than in the quadratic cost case. For the cubic damages, on the other
hand, marginal costs clearly increase. For high-emission scenarios, the SCC is much higher. The
effect of model uncertainty, in this case, is huge. Depending on the assumed interest rate, the
SCC for the most pessimistic climate scenario can be almost eight times the SCC for the most
optimistic scenario.

5.2. The effect of miscalibration

How important are the exact details of our calibration for the SCC? What happens, for instance,
if, instead of using the CDICE-HadGem2-ES calibration, we just change the ECS parameter
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FIGURE 10
SCC for different calibrations. RCP8.5 and quadratic damage function

in equation (4) to 2.15 or to 4.55 without changing any other parameters? How does the SCC
for the original DICE-2016 calibration differ from the SCC in our calibration? Figure 10 shows
how the SCC changes with various calibrations of the CE. We focus here on the RCP 8.5 sce-
nario with quadratic damages and compute the SCC at t = 5 (the year 2020) relative to the
CDICE calibration. Figure 10 shows the SCC for CDICE-HadGEM2-ES and CDICE-GISS-E2-
R as alternative temperature calibrations and compares them to simply setting the ECS to the
associated values (4.55 in CDICE-HadGEM2-ES and 2.15 in CDICE-GISS-E2-R), but leaving
the CDICE calibration unchanged otherwise (cf. the dot-dashed lines labeled “ecs45-CDICE”
and “ecs21-CDICE”). This is how uncertainty about the ECS is typically treated in economic
models of climate change (see, e.g. Nordhaus 2018 or Hassler and Krusell 2018). We observe
that even within the CDICE calibration, just changing the ECS is not a very good proxy for the
extreme warming scenarios in CMIP5. In particular, the SCC for an ECS of 2.15 is about 15%
too large relative to GISS-E2-R, and the SCC for an ECS of 4.55 is about 10% too small rela-
tive to CDICE-HadGEM2-ES. This indicates that for a quantitative treatment of climate model
uncertainty, it is not sufficient to simply vary the ECS parameter in the CE. As explained above,
the ECS is not a free parameter in Earth system models, but emerges as one characteristic of sim-
ulated climate change describing the very long-run behavior of temperature. For the social cost
of carbon, this very long run is largely irrelevant, and the speed of warming is often more impor-
tant. Modeling the climate uncertainty by simply varying the ECS parameters in the climate
emulator incorrectly reduces the uncertainty about the SCC by a significant amount.

Figure 10 also shows the ECS for the DICE-2016 calibration, the MMM, as well as calibra-
tions with an ECS of 2.15 and with 4.55. The differences with respect to CDICE are apparent:
For intermediate values of the discount fact (say 0.97 or so), the SCC for CDICE and DICE-2016
is very similar, both for the MMM and for the calibrations with ECS of 2.15 and 4.55, respec-
tively. In the case of a discount factor of 0.96, DICE-2016 underestimates the SCC substantially
and is about 20% lower than for CDICE. For high values of this parameter, DICE-2016 produces
much higher values for the SCC, for a value of 0.99, about 30% larger than CDICE.
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6. THE SOCIAL COST OF CARBON AND OPTIMAL ABATEMENT IN THE DICE
ECONOMY

In this section, we present the optimal solutions for the adjusted DICE-2016 model, which fea-
tures both the calibration of the economic part as presented in DICE-2016 (Nordhaus 2018)
merged with the re-calibrated CDICE climate part (cf. Section 4). We will, in the following, also
refer to this complete IAM as CDICE. A comprehensive summary of the complete calibration
of CDICE is available in the online Appendix B. We will refer to the original calibration of the
DICE model as DICE-2016.21

The key non-climate part of the DICE-2016 model consists of a single, infinitely lived, rep-
resentative consumer and a single firm. As it is standard in economics the equilibrium allocation
can be described as the solution to a planner’s problem (see, e.g. Golosov et al. 2014 for more
details, and Kotlikoff et al. 2021b for a critique of this approach). The planner/representative
agent maximizes a time-separable utility function over (per capita) consumption (Ct

Lt
)∞t=0 with a

constant intertemporal elasticity of substitution (IES), ψ > 0, and a time preference parameter,
0 < β < 1.22 The optimal value, V0 is given by the following expression:

V0 = max
{Ct ,μt }∞t=0

∞∑
t=0

β t

(
Ct
Lt

)1−1/ψ − 1

1 − 1/ψ
Lt (8)

s.t. Kt+1 = (
1 −	(μt )−�

(
TAT,t

))
K α

t (At Lt )
1−α + (1 − δ)Kt − Ct (9)

Equations (1), (4), (5)

0 ≤ Kt+1 (10)
0 ≤ μt ≤ 1 (11)

where Et = σt Y Gross
t (1 − μt )+ ELand

t . (12)

The CO2 emissions, denoted by Et , consist of non-industrial emissions, ELand
t , as well as indus-

trial emissions that are modeled as a fraction of output, σt Y Gross
t , with σt being emission intensity

and μt ≥ 0 being mitigation. Output is produced in a Cobb–Douglas technology with capital,
Kt , and labor, Lt . Mitigation is costly and decreases output at a rate	(μt ). Higher temperatures
decrease output at a damage �(T AT

t ). For a detailed specification and parametrization of all the
equations including exogenous variables and damages, please refer to the online Appendix B.

First, the planner solves the maximization problem stated above without understanding that
higher mitigation μt leads to lower damages from a temperature increase. In the BAU scenario,
she only chooses an investment path, and mitigation is set to zero. Then, she solves the problem
optimally by choosing mitigation as well as an investment path. In both cases, the SCC is the
marginal cost of atmospheric carbon in terms of the numeraire good. Following the literature
(see, e.g. Traeger 2014; Cai and Lontzek 2019), we can write the SCC as the planner’s marginal
rate of substitution between the atmospheric carbon concentration and the capital stock.

21. Note that the calibration for the original DICE-2016 stems from the publicly available GAMS code
specification. For details, see http://www.econ.yale.edu/∼nordhaus/homepage/homepage/DICE2016R-091916ap.gms.

22. In the online Appendix B, we list all exogenous variables, equations, and parameters of DICE-2016 and
CDICE.
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Thus, we have:23

SCCt = −∂Vt/∂MAT,t

∂Vt/∂Kt
. (13)

The optimal carbon tax (CTt ) is the tax that equates the private and the social cost of carbon.
Nordhaus (2018), among others, defined the optimal carbon tax as a function of mitigation μt .
The social planner chooses the mitigation μt , which is equivalent to choosing the carbon tax in
units [USD/tC]24 , that is,

CTt = θ1,tθ2μ
θ2−1
t

σt
, (14)

where θ1,t is the abatement cost, and σt is emission intensity.25

By definition, the SCC is equal to the optimal carbon tax if μt < 1.
In the following, we first consider the CDICE model under different CMIP5 calibrations

for the carbon cycle and the temperature equation. This is to illustrate that different reasonable
calibrations for the CE can have large effects on the optimal abatement. Second, we compare
CDICE to DICE-2016 to show some economic consequences of the incorrect calibration in
DICE-2016. We do so in two steps. First, we compare the predictions of the two calibrations
with the exact economic calibration from DICE-2016. Second, we also investigate the effects of
differences in the IES-parameter ψ , which can have large effects on future g-adjusted interest
rates.

6.1. CDICE—economic consequences of climate model uncertainty

We consider the economic model of DICE-2016 combined with our nine different reasonable
calibrations for carbon-cycle and temperature equations. We explore the economic consequences
of the large uncertainty in our climate model.26

We take as a starting date (t = 0) the year 2015. In addition, the initial conditions are listed
in Table 3.

We start our analysis by examining the predictions of the model in a scenario without mitiga-
tion. The first observation is that in this framework, the emissions are not sensitive to the climate
calibration used. Figure 11(a) shows the path of emissions for our nine versions of CDICE and
compares it to the emissions in RCP 85 and RCP 6. The assumed climate parameters have an
effect on BAU emissions via differences in damages (higher temperatures imply higher damages
that, in turn, imply less carbon emissions in this model), but the effect is quantitatively insignif-
icant. One reason for this behavior is that the damages only become large once emissions have
started to decline substantially. The fraction by which emissions are reduced by these damages

23. We mention here for the sake of accuracy that in DICE-2016, the cost of backstop is given in 2010 thousand
USD per ton of CO2 in 2015, whereas the mass of carbon in the atmosphere is measured in tons of carbon. Thus to make
the social cost of carbon formula numerically correct with respect to units of measurement, one needs to adjust it by a
factor of 3.66, which is a conversion rate between carbon and CO2. The SCC is measured in 2010-US dollars per ton of
carbon.

24. One needs to multiply the carbon intensity σt in the denominator by 1,000 because we define the carbon
intensity in the units of 1,000 GtC.

25. A detailed description of all parameters and exogenous parameters of the model can be found in the online
Appendix D.

26. All results we report in the following were obtained by using “deep equilibrium nets” by Azinovic
et al. (2022), a method for computing global solutions to high-dimensional dynamic economic models. Additional
implementation details, as well as the level of accuracy for our computations, are provided in the online Appendix D.
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(a) (b)

FIGURE 11
(a) BAU emissions as well as (b) growth-adjusted interest rate for different climate calibrations

Notes: Year zero on the graph corresponds to the starting year 2015.

might be significant, but the absolute value of the reduction is small. Figure 11(a) also shows
that the emissions from DICE-16 lie somewhere between RCP6 and RCP85. The lessons from
our detailed analysis of these emission scenarios above should also carry over to the DICE-2016
BAU emissions.

Figure 11(b) shows that the path of the growth-adjusted interest rate is also more or less the
same across different climate calibrations. There is some variation that can be explained by dif-
ferences in future damages that translate into differences in the interest rate. Higher expected
future damages imply a lower capital stock and a (slightly) higher interest rate today. The vari-
ation over time, which is much more substantial, is mostly explained by the assumption in
DICE-2016 that TFP growth, as well as population growth, flattens over time. The DICE-2016
calibration starts with an initial population growth of 1.4% and an initial TFP growth of 2.25%,
with population growth declining fast over the next 50–100 years and TFP growth declining sub-
stantially slower. The way the time-varying growth rates translate into the time-varying interest
rate depends crucially on the preferences of the representative agent. We will return to this issue
in Section 6.3. Note for now that the initial g-adjusted interest rate is close to zero, whereas after
50 years, it is around 2%, and then finally converges to 1.5% in the very long run.

Figure 12 shows the effect of different climate calibrations on damages as a percentage
of GDP and the SCC as a percentage of GDP. As is to be expected from our discussions in
Section 5.1, our three different calibrations for the carbon cycle imply three vastly different
predictions for CO2 concentrations. Across different temperature equations, for a fixed carbon
cycle, this then results in nine vastly different paths for temperature. As already pointed out in
Section 5.1, the effects of the carbon cycle calibration on temperatures and damages are not
nearly as large as the effect of the calibrations of the temperature equation, and the combina-
tion of an extreme carbon cycle and an extreme temperature equations yields extreme damages.
This is true both for CDICE-MESMO-HadGEM2-ES as well as for CDICE-LOVECLIM-GISS-
E2-R. The range of plausible damages in 300 years goes from around three percent of GDP to
over 17.5% of GDP; almost a factor of six. As expected this has a very large effect on optimal
abatement. The relative SCC depicted over the next 50 years in Figure 12(b) is fully consistent
with our results in Section 5.1. In this section, we discussed only the SCC at a fixed date t = 5,
whereas we examine it here over the next 30 periods. The SCC initially falls over time, and this
effect is caused by the stark rise in the g-adjusted interest rate discussed above. After that, it stays
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(a) (b)

FIGURE 12
This figure shows the (a) evolution damages and the (b) relative SCC over time for nine CDICE calibrations in the

business as usual case

Notes: Year zero on the graph corresponds to the starting year 2015.

relatively flat, and the relative SCC between the different temperature calibrations is similar to
that described in Section 5.1.

The large differences in damages and the SCC across calibrations imply large differences in
the optimal solution. We now assume that the social planner optimally chooses mitigation, μt ,
in the optimization-problem (8). Figure 13(a) shows the optimal abatement choices for the nine
different climate calibrations. Differences in the social cost of carbon translate mechanically into
differences in optimal abatement via equation (13). Since the exogenous parameters in equation
(13) are time-varying, optimal mitigation is time-varying. The differences in optimal mitigation
between the different climate calibrations are huge over the next 80 years; about a factor of three.
By definition, differences in abatement lead to differences in emissions. Figure 13(b) shows BAU
emissions for our nine cases compared to the emission scenarios in RCP 2.6 and in RCP 4.5. It
is interesting to note that in all cases, optimal emissions remain far above RCP 2.6 emissions.
This is a consequence of the specification of the damage function in DICE-2016, which we use
here, and the fact that the model does not allow for carbon removal, which becomes an active
part of future policy in RCP 2.6. Emissions in the MMM case closely mirror optimal emissions
in RCP 4.5.

The fact that optimal emissions stay far above RCP26, which is the strong mitigation sce-
nario from IPCC, readily implies that the optimal temperature rises far above the Paris limit.
Figure 14(a) shows that in the MMM calibration, temperature rises (relative to pre-industrial
levels) by 3 K and stays at that level for hundreds of years. In our most pessimistic climate cali-
bration, the optimal temperature rises by over 4 K. As pointed out before, this depends crucially
on the choice of the damage function, which we take directly from DICE-2016 for comparison
purposes. As Nordhaus (2008) pointed out, “the economic impact of climate change . . . is the
thorniest issue in climate-change economics.” See Hänsel et al. (2020) or Carleton et al. (2020)
for more realistic treatments of damages.

Naturally, the choice of the damage function leads to relatively low SCC in levels.
Figure 14(b) depicts the social cost of carbon in dollars over the next 50 years. Note that it
increases only because of GDP growth. The relative SCC is almost identical to that in the BAU
case depicted in Figure 12(b) above. Recall that the optimal tax on carbon is equal to the SCC.
Thus, the model’s optimal tax lies, for the MMM case, slightly below what is typically discussed
for economic policy purposes.
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(a) (b)

FIGURE 13
This figure shows (a) optimal abatement and (b) emissions over time

Notes: Year zero on the graph corresponds to the starting year 2015.

(a) (b)

FIGURE 14
Evolution of (a) optimal temperature and (b) SCC with optimal abatement

Notes: Year zero on the graph corresponds to the starting year 2015.

6.2. The economic consequences of miscalibrated climate

As pointed out above, the calibration of the climate part of DICE-2016 has two serious flaws.
Both the temperature equations and the carbon cycle are miscalibrated. As mentioned in
Section 4.2, the carbon cycle in DICE-2016 overstates the fraction of CO2 emissions that end up
in the atmosphere relative to the MMM in Joos et al. (2013) and the extreme CDICE-MESMO
case. We can confirm this by inspecting the BAU results. Compared to all three carbon calibra-
tions in CDICE, DICE-2016 predicts way too much carbon in the atmosphere (cf. Figure 15(a)).
In fact, the amount of carbon in the atmosphere is larger than for the CDICE-MESMO calibration
(which corresponds to the extreme case in Joos et al. 2013) at any point in time.

The effect is less pronounced if one considers the overall temperature response. In addition to
a mistake in the carbon cycle, the DICE-2016 calibration also makes a mistake in the temperature
equation. As Figure 15(b) illustrates, in the short run (for the first 50 years or so), CDICE predicts
more warming than the DICE-2016, despite the fact that there is far less CO2 in the atmosphere.
Even for an ECS of 4.5, DICE-2016 initially warms slower than the CDICE MMM calibration.
The combined effect of temperature- and carbon-cycle miscalibration is crucial here; if one
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(a) (b)

FIGURE 15
(a) Mass of carbon and (b) atmospheric temperature, BAU case for the CDICE and DICE-2016 calibrations

Notes: Year zero on the graph corresponds to the starting year 2015.

takes the CDICE MMM temperature equations together with the DICE-2016 carbon cycle, the
temperature evolution is comparable to DICE-2016. The most notable difference is the initially
overly slow warming in the DICE-2016 temperature equations.

Note that in the very long run, the dynamic system, defined by equations (1), (4), and (5), that
governs climate in our simple model will converge to a new steady-state after all emissions are
zero. In this steady-state, relative masses of carbon are given by the vector ME Q/

∑3
l=1 ME Q,l

and it can be easily seen that the fraction of emitted CO2 that remains in the atmosphere is
about 0.26 for our CDICE calibration and about 0.22 for DICE-2016. The long-run effect on
temperature is determined by the ECS, which is chosen to be 3.25 in CDICE and 3.1 in DICE-
2016. Overall, the very long-run behavior of the two calibrations will be similar, with more
warming in CDICE than in DICE-2016. Nevertheless, the miscalibration in DICE-2016 implies
a consistently higher mass of carbon in the atmosphere over the next 500 years and a higher
temperature after about 100 years. The important lesson is that parameters that determine the
very long run of the climate system are more or less irrelevant to temperature over the next
300 years and, therefore, for the SCC that determines optimal policy today.

So far, we are repeating statements that we already made in Section 4. The crucial question
is what the implications of this miscalibration are for the optimal policy. Figure 16(a) depicts
the optimal levels of abatement for the different calibrations. Abatement is presented as a share
of industrial emissions that are mitigated. Hence, its numerical values are bound to the inter-
val [0, 1], where 0 corresponds to the absence of any abatement, whereas 1 implies using the
full mitigation capacities. The figure shows that the DICE-2016 calibrations imply a little more
optimal abatement than the respective CDICE calibrations. The differences are so small because
initial warming lies below the CDICE case and, with discounting, this is important for abatement
over the next decade. This finding again highlights the relevance of both parts of the climate
model, of the carbon cycle and the temperature response, and of caution against the potential for
compensating errors.

From this figure, one might be tempted to argue that for policy recommendations it does not
make much of a difference whether one uses the CDICE calibration or the DICE-2016 calibra-
tion. However, it makes a large difference for optimal temperature as Figure 16(b) demonstrates.
The DICE-2016 (with the ECS of 3.1) atmospheric temperature is now outside of the CMIP5
range. It can be seen that after about 90 years, the black line (corresponding to DICE-2016)
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(a) (b)

FIGURE 16
Optimal abatement in CDICE and DICE-2016: (a) optimal abatement over time and (b) temperature in atmosphere,

optimal abatement case

Notes: Year zero on the graph corresponds to the starting year 2015.

crosses the predicted temperature under the optimal mitigation in DICE-2016, and it is above
the temperature predicted by the extreme climate sensitivity scenario CDICE-HadGEM2-ES.
In the BAU scenario, DICE-2016 falls well within the CMIP5 range, whereas in the economic
model with mitigation, this is no longer the case. This issue arises because, in the BAU scenario,
DICE-2016 is “helped” by offsetting errors in the climate equations and the carbon cycle. In
the case of optimal mitigation, the flaw in the carbon cycle dominates and leads to so little mit-
igation that the temperature rises by more than 4 K. This is already implicit in the BAU SCC.
Despite the fact that DICE-2016 leads to much larger damages and much higher temperatures
than CDICE, the SCC is almost identical. This implies (to first order) the same optimal carbon
tax for CDICE and DICE-2016, resulting in far higher temperatures in DICE-2016.

Although long-run temperatures differ so much, the reason why abatement and the SCC
are comparable between CDICE and DICE-2016 is simply that these temperature differences
only become significant in 75 years and, as shown in Figure 11(b), the g-adjusted interest rate
is relatively high at that point in time. The damages that occur are heavily discounted. If one
takes a different perspective and, instead of maximizing the utility of a social planner, restricts
long-run warming to lie below 2 K, the differences between the two climate model calibrations
become starker. In fact, for the DICE-2016 calibration, it is impossible to keep the temperature
below 2 K. Full abatement that reduces industrial emissions to zero does not suffice to keep
global warming below 2 K. This is very different in CDICE, where putting an immediate stop
to industrial emissions will keep warming below 1.7 K. Somewhat more realistically, if one
considers the RCP 2.6 emissions profile (that includes carbon removal), DICE-2016 warms by
more than 2.5 K (as can already be seen in Figure 7) and stays above 2.3 K beyond 2300 while
CDICE warms by 2.1 K, but warming is below 1.8 K by 2300.

Clearly, discounting is crucial for the small differences in abatement between the two cali-
brations. The interest rate is endogenous, as it depends on consumption growth, but also on the
preferences of the representative agent.

6.3. The role of discounting

There is a large literature (see, e.g. Stern 2007; Hänsel and Quaas 2018) about the “right” dis-
count rate for the social planner, that is, about the correct value of the parameter β = 1

1+ρ in the
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(a) (b)

FIGURE 17
(a) Interest rate and (b) SCC under different values for ψ

Notes: Year zero on the graph corresponds to the starting year 2015.

planner’s utility function. It is sometimes argued that this parameter can be pinned down by the
observed average rates of return to capital (or interest rates). In a growth economy, this is not
quite correct as the curvature of the planner’s felicity function, ψ , and the time preference β are
not jointly identified from average interest rates. The fact that in DICE-2016, the SCC is so sen-
sitive to the growth-adjusted interest rate (documented in Section 5) implies that changing these
two preference parameters simultaneously while keeping average interest rates fixed has large
effects on the SCC and on optimal abatement in the DICE-2016 calibration. For simplicity, we
take the baseline per-capita consumption growth rate to be 2%, which gives an interest rate of
4% in the DICE-2016 calibration (the long-run average growth rate in DICE-2016 is assumed to
be zero, so we pick the 2% somewhat arbitrary to be consistent with the historical average and
common long-run assumptions).

Figure 17(a) shows the paths of growth-adjusted interest rate for different values of the IES,
ψ , in the business as usual case. G-adjusted interest rates are quite similar for the first 40 years,
but there is significant divergence in the long run. After 200 years, the difference in g-adjusted
interest rates between ψ = 0.5 and ψ = 2 is almost a factor of 2. As Figure 17(b) shows, this
naturally translates into a large difference in the social cost of carbon across different specifi-
cations of the IES. The figure shows the SCC relative to output. The absolute SCC increases
over time in all cases because of output growth. Because of the incorrect timing in the climate
calibration of DICE-2016, the effect of the parameter ψ on interest rates is amplified, and the
differences in the SCC between low and high ψ are larger than 50%. While a value of ψ = 2
might be considered an unrealistically high value of the IES, ψ = 0.5 is certainly well within
the range of the IES which is typically assumed.27

For the ψ = 0.5 case, the relative social cost of carbon initially decreases slightly and then
strongly increases over time. This is obviously caused by the fact that g-adjusted interest rates
decrease over time. In contrast, for a high value of the IES, ψ = 2, g-adjusted interest rates start
decreasing significantly in about 40 years, leading to decreases in the SCC over time.

27. There are large differences in the IES typically assumed in the macro-literature (one or larger) to those
typically found in household studies. There it is found that the IES varies significantly across households, ranging from
0.3 to 1. See, e.g. Calvet et al. (2021).
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FIGURE 18
Optimal abatement for different values of ψ and different climate calibrations

Notes: The left panel shows results for MMM, the middle panel for high ECS calibrations, and the right panel for low ECS calibrations.
Year zero on the graph corresponds to the starting year 2015.

FIGURE 19
Optimal temperatures for different values of ψ and different climate calibrations

Notes: The left panel shows results for MMM, the middle panel for high ECS calibrations, and the right panel for low ECS calibrations.
Year zero on the graph corresponds to the starting year 2015.

These differences in the BAU SCC obviously imply large differences in optimal policies.
Figure 18 shows optimal abatement for the three values of ψ , comparing the DICE-2016 cali-
bration to CDICE. The three panels in the figure show different ECS calibrations for DICE-2016
and HadGEM2-ES and GISS-E2-R for CDICE. Differences in abatement are very large between
the different ψ-cases. In particular, in DICE-2016, for large ψ , the use of carbon is extended by
about 50 years relative to the low IES case. This is true independently of the assumption on the
ECS. Since the timing in the DICE-2016 calibration is wrong, the effects of future lower interest
rates are much more pronounced than for CDICE. In fact, for a high value of ψ (higher future
interest rates), the optimal policy in CDICE and DICE-2016 are quite similar; the differences
become large as expected future interest rates become small. The range of plausible values for ψ
adds another model uncertainty to economic models of climate change, and it turns out that the
miscalibration in DICE-2016 amplifies the effect. In more interesting models with uncertainty
and Epstein–Zin utility (see, e.g. Cai and Lontzek 2019), the use of the DICE-2016 climate
calibration is likely to lead to serious problems.

As above, optimal long-run temperatures in DICE-2016 are far above the values in CDICE.
Now there is an even larger spread caused by different values for ψ . Figure 19 shows future
temperature under optimal abatement for different values of ψ and for the three different specifi-
cations of ECS. For the case of a high ECS, the optimal warming under DICE-2016 is now quite
dramatic if one assumes a high value of ψ . In 200 years, optimal warming is almost 6 degrees;
far above anything considered acceptable by most climate scientists. Even for the MMM calibra-
tion, a high ψ implies warming by more than 4.5 K. For this high IES case, warming prescribed
by DICE-2016 falls significantly out of the CMIP5 range.

Future interest rates and growth rates matter a lot for optimal mitigation and optimal interest
rates. Even if one settles on a path for TFP growth, different reasonable preference specifica-
tions lead to large differences in interest rates. The fact that the DICE-2016 calibration of the
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climate emulator contains two flaws (discussed in detail above) implies an unrealistically large
sensitivity to discounting, and differences in future interest rates translate into an unrealistically
large difference in the SCC.

The results presented here clearly highlight the need for reliable climate calibrations and
show the advantages of our approach. The fact that DICE-2016 lies within the range of CMIP5
predictions in some cases does not ensure that it can be used as a reliable tool within a calibrated
economic model.

7. CONCLUSION

IAMs provide a quantitative framework that takes into account economic and environmental
stocks and flows as well as their interaction and which allows researchers to investigate climate
change and possible mitigation pathways (Hassler et al. 2016). IAMs differ very much in terms
of structure, complexity, level of detail, and possible solution methods (Weyant 2017; Hare et al.
2018; Doukas et al. 2019). Models like the one by Clarke et al. (2009) have very rich climate
representation, whereas Bosetti et al. (2007) provided a detailed economic model. Other models
provided a detailed representation of the energy sector. Models like Nordhaus (2018), Golosov
et al. (2014), Traeger (2019), Hambel et al. (2021), and Hassler and Krusell (2018) have a more
parsimonious structure and exhibit a higher level of aggregation, but allow for monetary esti-
mates both for the cost of curbing climate change and for the economic benefits that it brings,
which is a necessary feature from a policy-making perspective. Having a very detailed model
with the possibility of a cost-benefit analysis would be the preferable option. However, com-
putational costs for such kinds of models are extremely high. Thus, there is a strong demand
for IAMs, on the one hand, for capturing and reflecting relevant processes both in the economy
and climate. On the other hand, IAMs are necessary for quantitative estimation (uncertainty,
risks, tipping points, endogenous growth), so they should be parsimonious enough to have rea-
sonable computational complexity. The perfect candidate to satisfy both requirements could be
the DICE model (Nordhaus 2018). However, it has been strongly criticized by climate scientists
and recently by economists for representing climate not in accordance with the recent climate
science advancements (Dietz et al. 2021).

Our paper’s three main contributions are as follows. First, we develop a series of tests to
evaluate the quality of CEs used in economic modeling. These tests include one test that is
similar to Dietz et al. (2021), but overall they are more comprehensive in that they specifically
test both, the temperature equations and the carbon cycle of CEs.

Second, we update the parsimonious climate representation of climate in DICE with a new
calibration of coefficients that aligns it with the CMIP5 benchmark, making the DICE model
both simple and transparent yet making it realistically represent climate. The functional form
of the climate part in DICE is retained. This allows authors who have the climate module of
DICE “hard-wired” in their economic model to obtain more reliable results by simply changing
parameters.

Third, we explain that, although the DICE-2016 predictions in a BAU scenario fall within the
range of CMIP5, this is caused by two compensating errors in the calibration. We demonstrate
that mitigation scenarios are highly sensitive to such compensating errors between the carbon
cycle and the temperature response of the model. We advocate that this result is generic and not
specific to DICE-2016 and that the proposed battery of tests enables the identification of such
issues in climate models used in climate economics. Regarding DICE-2016, our conclusion is
similar to that in Dietz et al. (2021); the calibration of DICE-2016 is not suited for reliable policy
analysis.
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An important aspect for the calibration and testing of a CE, is what physics is covered by
either the test data or the functional form of the CE—as, for example, the box-model formulation
used here or an impulse response function (IRF) formulation frequently seen in the literature.
This is a vast question that may easily fill a paper of its own, but it is useful to point out a
few aspects that come to mind in the context of the present study. We first note that a box
model, as used here for the carbon cycle, preserves the total carbon mass in the system, apart
from carbon added to the system via human activity. A corollary is that such a box description
“knows” when its reservoirs (boxes) are out of (pre-industrial) equilibrium, factoring in any
resulting associated fluxes among reservoirs automatically. This is in contrast to IRF approaches,
as used, for example, in Joos et al. (2013), where the temporal evolution of a perturbation to
a reservoir (as a carbon emission pulse to the atmosphere) is described as a function of time
but without taking into account where the part of the perturbation leaving that reservoir (e.g.
the atmosphere) goes. Consequently, an IRF formulation cannot be aware of whether or how
strongly out of equilibrium different reservoirs (atmosphere, ocean, land, etc.) are. Coefficients
in either formulation, box, or IRF, can be made aware (calibrated) such as to take into account
feedbacks affecting the exchange among reservoirs (e.g. Sterner and Joh ansson (2017) for box
models, or Joos et al. 2001 for IRFs). On the side of the carbon cycle, such feedbacks include
carbon concentration and carbon-climate feedback, that is, carbon fluxes among reservoirs are
sensitive to changes in atmospheric carbon concentration or global mean temperature that have
already occurred relative to pre-industrial times (see, e.g. Arora et al. 2013, 2020). Other effects
present in the full climate system are more difficult to capture via simple climate emulators. An
example here is feedback due to two-dimensional patterns of ocean surface temperature (see,
e.g. Andrews et al. 2022). By design, such feedbacks are beyond the scope of simple zero-
dimensional CEs as the one studied here. Nevertheless, such simple CEs are of obvious interest
for economic applications.
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