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A B S T R A C T   

The Limited surface observations of turbulent heat fluxes result in incomplete knowledge about the surface 
energy balance that drives the climate system. The highly parameterized surface energy balance models suffer 
from significant uncertainties. Remote sensing information of incoming and outgoing radiation fluxes are 
important input variables for turbulent heat flux models, though analytical solutions of surface energy budget 
from these variables are yet to be derived. Here, we developed a novel, purely physics-based analytical method 
grounded on the thermodynamic principle of maximum power. The approach derives the total turbulent heat 
flux only from the four inputs of incoming and outgoing longwave and shortwave radiations at the land surface, 
which are available from remotely sensed satellite data. The proposed approach does not use any parameteri
zation, unlike the existing surface energy balance models, and hence does not suffer from uncertainty due to the 
same. We validated our methodology with 102 eddy covariance observation stations around the globe with 
different land use land covers from FLUXNET2015 and available urban datasets. Based on monthly averages of 
the total turbulent flux estimates for the eddy covariance sites, we observed root-mean-square error (RMSE) of 
23.2 ± 10.9 Wm− 2, a mean bias error (MBE) of 11.9 ± 13.1 Wm− 2 and R2 value of 0.86 ± 0.15. Using the 
satellite observations of radiation fluxes from CERES at a spatial resolution of 10, we obtained the global flux 
field of total turbulent flux (QJ) and land surface heat storage (ΔQs) fluxes. On validation of QJ with FLUXNET 
sites for six grids for different land use land cover, we found RMSE of 20.1 ± 7 Wm− 2, MBE of 14.4 ± 9 Wm− 2 

and R2 value of 0.96 ± 0.02. Further, from the evaporative stress factor of GLEAM, which is based on microwave 
remotely sensed vegetation optical depth and root zone soil moisture, we have obtained spatially distributed 
global estimates of Sensible(H) and latent heat (LE). In addition, our analytical estimates address the distribution 
of residual energy associated with the surface energy balance closure problem driven by the land use land cover. 
The theoretical estimates of all surface energy balance components from remote sensing based observations will 
improve our understanding of surface warming for different land use land covers across the globe.    

List of Symbols 
Symbols Variable Name (Units) 
K↓ Incoming shortwave radiation flux (Wm− 2) 
K↑ Reflected shortwave radiation flux (Wm− 2) 
L↓ Incoming longwave radiation flux (Wm− 2) 
L↑ Outgoing longwave radiation flux (Wm− 2) 
Rs Net absorbed shortwave solar radiation flux by the surface 

(Wm− 2) 
Rs,avg Average Surface absorption flux of solar radiation in a day 

(Wm− 2) 
Rlnet Net outgoing longwave radiation flux (Wm− 2) 
Rl,out Flux of terrestrial radiation out of the system (Wm− 2) 
Rl,0 A constant in longwave linear approximation (Wm− 2) 
Q* Net all-wave radiation (Wm− 2) 
QJ Total turbulent heat flux (Wm− 2) 
ΔQs Land surface heat storage flux (Wm− 2) 
QRES Residual energy flux in Surface energy balance (Wm− 2) 
QDiff Differential energy flux (Wm− 2) 
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H Sensible Heat flux (Wm− 2) 
LE Latent Heat flux (Wm− 2) 
Hopt thermodynamic optimal value of Sensible heat flux (Wm− 2) 
LEopt thermodynamic optimal value of Latent heat flux (Wm− 2) 
Ts Surface temperature (K) 
Tr Atmospheric radiative temperature (K) 
Tdry Effective dry sink temperature (K) 
Ta Effective temperature of atmospheric heat engine (K) 
ΔS Change in Entropy associated with processes (Wm− 2 K− 1) 

ΔSdif Entropy of sensible heat diffusion term (Wm− 2 K− 1) 
ΔSpc Entropy due to phase change (Wm− 2 K− 1) 
ΔSdv Entropy due to water vapour diffusion (Wm− 2 K− 1) 
G Convective Power (Wm− 2) 
Gd Convective Power of dry convective engine (Wm− 2) 
ηcarnot Carnot efficiency 
D Frictional Dissipation of mechanical energy (Wm− 2) 
DK Dissipation occurs as turbulent dissipation (Wm− 2) 
DP Precipitation-induced dissipation (Wm− 2) 
ΔU Change in Internal Energy of the system (Wm− 2) 
ΔQa Change in atmospheric Heat Storage (Wm− 2) 
fw Evaporative Stress fraction 
s Slope of saturation vapour pressure curve 
e partial pressure of water vapour (Pa) 
esat,T Saturation vapour pressure at temperature T (Pa) 
γ Psychometric constant = 65 (Pa K-1) 
λ latent heat of vaporization = 2.5 × 106 (J kg− 1 K− 1) 
σ Boltzmann constant = 5.67 × 10− 8 (Wm− 2 K− 4) 

1. Introduction 

The energy flow between the surface and the atmosphere largely 
determines global and regional changes in the climate system due to 
variations in the atmospheric conditions and surface state(Stephens 
et al., 2012; Von Schuckmann et al., 2016). The surface energy balance 
(SEB) is fundamental to assessing this energy exchange (Wild et al., 
2013). It disentangles the surface feedback through the competing 
ecohydrological, biophysical, geophysical processes, and anthropogenic 
alterations(Duveiller et al., 2018; Forzieri et al., 2018; Huang et al., 
2013). The direct global satellite observations of radiative exchange at 
the top of the atmosphere combined with the global ocean heat content 
measurements have established global warming by estimating the 
changes in Earth’s energy imbalance (EEI)(Loeb et al., 2021; Schuck
mann et al., 2020; Von Schuckmann et al., 2016). However, there is 
incoherent knowledge concerning the distribution of this radiative en
ergy and its driving factors at the land surface that is mostly shared by 
the non-radiative surface energy fluxes (Wild, 2020; Wild et al., 2013). 
Primarily, the surface heating due to the absorbed solar radiation dis
sipates as the energy transfer to the cooler atmosphere by the net ex
change of terrestrial longwave radiation and exchange energy as 
turbulent heat in the form of Sensible and Latent heat flux. Further, the 
surface retains some part of the energy as a land surface heat storage 
flux. 

The different techniques(Liang et al., 2010; Rahman and Zhang, 
2019; Yi et al., 2019) to estimate surface fluxes depend highly on site- 
specific parameters and climatic conditions, creating uncertainty for 
global assessment(Mueller et al., 2013; Mueller and Seneviratne, 2014; 
Sheffield et al., 2012). Direct in-situ observations are collected as point 
measurements from surface stations; for example, FLUXNET(Baldocchi 
et al., 2001; Chu et al., 2017) is a global network of Eddy covariance 
(EC) towers but with limited coverage for extrapolating to globally 
distributed estimates(Chu et al., 2017; Jung et al., 2019). Furthermore, 
the SEB assessment using the EC towers mostly leaves unexplained re
sidual energy, averaging about 16% of available energy, resulting in a 
surface energy balance closure problem(Mauder et al., 2020; Stoy et al., 
2013). The regional climate models used for the surface energy balance 

computation require detailed surface characteristics and high-resolution 
for better performance(Davin et al., 2016; Paul et al., 2018), which 
makes them computationally intensive(Gutowski et al., 2020). Their 
outputs in simulating energy exchange are characterized by high un
certainty due to the use of spatially and temporally varying parameters 
and transfer coefficients, which are not well established(Grimmond 
et al., 2010). The varied sources of input variables and use of multiple 
climate models are another sources of uncertainty in SEB simulations 
(Best et al., 2015; Stephens et al., 2012). 

Remote sensing (RS) has been used along with land surface models to 
improve the spatial estimate of turbulent fluxes. In addition to incoming 
and outgoing radiations, most of these models used additional RS vari
ables, such as land surface temperature (LST) and vegetation indices 
(VI), like normalized difference vegetation index (NDVI) and Leaf area 
index (LAI). Influences of these variables on surface energy fluxes 
(Bateni and Entekhabi, 2012a) were captured through empirical re
lationships (Carlson, 2007; Gillies et al., 1997; Kalma et al., 2008; 
Sandholt et al., 2002). The models SEBAL(Bastiaanssen et al., 1998a, 
1998b), SEBS(Su, 2002), Ma et al. (2018), and Song et al. (2016) esti
mate H by combining RS based instantaneous LST with micrometeo
rology variables like air temperature, wind speed, and humidity, and 
calculate LE as SEB residual. LST signature and VI control were further 
used to improve parameterization related to the boundary layer and 
canopy conductance and thus the evaporation (therefore LE) (Jiang and 
Islam, 2001; Mallick et al., 2013, 2014; Sun et al., 2013; Tang et al., 
2010; Wang et al., 2006). Other method like land data assimilation 
system (LDAS) assimilates RS products using techniques such as the 
Kalman filter(Bateni and Entekhabi, 2012b; Carrera et al., 2015; Xu 
et al., 2011, 2018) and variational data assimilation(Abdolghafoorian 
et al., 2017; Bateni et al., 2013; Xu et al., 2019). Most of the approaches, 
however, are tested regionally, with limited availability of global 
products. The Global land data assimilation system (GLDAS) provides all 
fluxes globally by integrating satellite and ground observations with 
multiple land surface models like Mosaic, Noah, and the Community 
land model (CLM). Apart from using static data of land cover and 
vegetation classification from AVHRR and MODIS satellites, GLDAS 
currently assimilates GRACE terrestrial water storage with meteoro
logical forcing data from NOAA Global Data Assimilation System 
(GDAS)(Rodell et al., 2004). The Model Tree Ensemble (MTE)(Jung 
et al., 2011) and the FLUXCOM(Jung et al., 2019) products used EC 
observations using machine learning (ML) ingested with satellite data 
such as LST, land cover, and the fraction of absorbed photosynthetically 
active radiation (fPAR). Further, some satellite data integrated products 
only provide global evapotranspiration (ET) such as MODIS ET(Mu 
et al., 2007) and GLEAM (Martens et al., 2017; Miralles et al., 2011), 
both using Priestley-Taylor eq. (PT)(Priestley and Taylor, 1972) equa
tions. In GLEAM, satellite solar radiation and surface meteorology were 
used as input in the PT equation to estimate potential evaporation. 
Further, the GLEAM advances by assessing and adding the water stress 
conditions using microwave retrievals of land surface temperature, soil 
moisture, and vegetation optical depth, which previous models did not 
effectively consider. Although RS-based and assimilated models greatly 
aid in studying global land-surface interactions and water budgets, the 
uncertainties are associated with global meteorological forcing data, 
empirical settings with parameters and predictor variables, the broad 
classification of heterogenous signals such as land cover, use of different 
machine learning algorithms, and the energy balance closure problem. 

Direct and generalized physics-based estimates of the turbulent 
fluxes, from satellite observations, independent of surface inputs and 
parameterization, address the abovementioned limitations. However, 
such models are yet to be developed to assess the spatio-temporal land 
energy feedback to the atmosphere. 

Another crucial component of SEB is the land surface heat storage 
flux. In most of the modeling techniques, it is used as input to estimate 
turbulent fluxes(Purdy et al., 2016). More importantly, it determines the 
inertial heat capacity of the land, develops diurnal variation in local 
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climate, and governs available energy partitioning into sensible and 
latent heat flux(Meier et al., 2019). Along with the soil layer, it com
prises canopy heat storage that constitutes heat storage in land cover, 
biomass, water content, and photosynthesis in the canopy(Heidkamp 
et al., 2018; Moore and Fisch, 1986; Oke et al., 1981). Thus, it shows the 
potential to explain the role of the variation in land characteristics in 
climate change. These characteristics are mostly neglected in climate 
models as they are not easy to measure, need to be parameterized, and 
are assumed to have insignificant value(Stoy et al., 2013). However, the 
net canopy storage can aggregate up to 15% of net radiation for crop 
sites(Moore and Fisch, 1986) and 2–6 times more for urban canopies 
(Roberts et al., 2006; Oke and Cleugh, 1987). 

We developed an approach based on principles of thermodynamics 
to estimate surface fluxes that describe the land-atmosphere as a 
radiative-convective system. The energy and entropy budget, through 
the first and second law of thermodynamics, respectively, describes di
rections, constraints, and limits of energy conversion in this system. We 
reviewed the studies(Kleidon, 2016; Kleidon et al., 2014; Kleidon and 
Renner, 2013a, 2018; Pauluis and Held, 2002a,b; Rennó and Ingersoll, 
1996) based on thermodynamics describing the energy and water ex
change through a natural radiative-convective system in equilibrium or 
steady state. Here, we updated the existing thermodynamic theory and 
developed a theoretical method to estimate the turbulent fluxes in the 
SEB directly for the first time. Unlike previous studies, the method does 
not need in-situ measured surface heat storage or its complex parame
terization, thus bringing an enlightened perspective on the SEB and its 
closure for different land covers. We derived an analytical expression 
(details in Theory and Methods) to estimate the turbulent heat fluxes 
that does not require high computation requirements and eliminates the 
highly uncertain parameterization inputs like roughness length. The 
estimated turbulent fluxes are tested with Eddy covariance observations 
of the FLUXNET2015(Pastorello et al., 2020) database across different 
ecosystems and land uses classified by the International Geo
sphere–Biosphere Programme (IGBP). Further, we showed the potential 
of the proposed approach in estimating the spatially distributed turbu
lent (Sensible and latent heat) flux fields by taking inputs from the 
CERES satellite data and global evaporative stress factor. We validated 
our approach for several grids where in-situ FLUXNET2015 EC obser
vations are available. 

The organization of the paper is as follows: Section 2 presents the 

theory, equations, and a diagrammatic flow of estimation, assisted by 
Appendix A, for conceptual understanding of thermodynamic principles 
in deriving the equations. Section 3 explains the data and the processing 
steps for local and global validation and implementation. Section 4 
presents the results with associated discussions, including validation of 
local and global thermodynamic estimates with EC fluxes, spatial com
parison with global land flux products, discussion of global land surface 
heat storage flux, and analysis of global aggregated values with litera
ture. Section 5 explains the general discussion with the significance of 
the approach in understanding the fluxes and limitations. Lastly, Section 
5 reports the conclusion. 

2. Theory 

The Surface energy balance (SEB) at the surface-atmosphere inter
face is given as: 

Rs − Rlnet = QJ +ΔQs (1) 

Where,Rs is the net absorbed shortwave solar radiation flux by the 
surface, the difference between the incoming shortwave radiation (K↓) 
and the reflected shortwave radiation (K↑)(Rs = K↓ − K↑). ΔQs is the 
surface heat storage flux. Rlnet is the net longwave radiation flux, given 
by the difference between the outgoing longwave radiation (L↑) and the 
incoming longwave radiation (L↓)(Rlnet = L↑ − L↓). QJ is the turbulent 
heat flux, the sum of sensible heat flux (H) and latent heat flux (LE), 
(QJ = H+ LE). 

Here, we described the land-atmosphere as a radiative-convective 
system in a steady-state. The system boundary is comprised of two 
boundary reservoirs (Fig.1), Surface as a hot reservoir with temperature 
Ts and free atmosphere as a cold reservoir with atmospheric radiative 
temperature Tr. The temperature difference between the reservoirs 
drives the energy transfer from the surface to the atmosphere. The 
convective process in the atmospheric boundary layer manifests as a 
heat engine that causes turbulent heat exchange by mechanical motion 
of heated air parcel. The convective process carries H from the warmer 
land surface to the cooler atmosphere. In moist conditions, evaporation 
is critical as it consumes a substantial part of surface energy as latent 
heat to form water vapour. According to the studies(Kleidon, 2016; 
Kleidon et al., 2014; Kleidon and Renner, 2013a), the convective process 
near the land surface establishes such that the water vapour is passively 

Fig. 1. Schematic diagram of a land-atmospheric convective system using the Thermodynamic theory.  
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transported as mass exchange with the air parcel in the convective 
motion until the air parcel saturates and condensation occurs. When the 
water vapour condenses to form the base of clouds, it releases the latent 
heat causing the convective motion within the clouds, which ultimately 
dissipates at the temperature Tr. Hence, two different energy transfer 
processes exist in two layers (Fig.1). The first is the dry convection near 
the surface with mechanical updraft and downdraft of air parcels that 
transport sensible heat and passively transport latent heat as water 
vapour. The other is the moist convection due to the condensation 
release of latent heat that develops convective motion in the clouds. 
Fig.1 shows the schematics of the dry and moist convective layers. 

Tr is assessed based on the diurnal behaviour of the land-atmospheric 
convective system. We used the approach(Kleidon and Renner, 2018) 
that described the buffering effect of heat in the land-atmospheric sys
tem. The surface gets warmer with respect to the cooler atmosphere 
during the day with the shortwave heating (Rs); however, due to the 
buffering of this heat into the land surface and the atmosphere, the heat 
radiates back to the free atmosphere at temperature (Tr) during both day 
and night, averagely. The average longwave radiation to the free at
mosphere from the system during both day and night is Rs,avg = σTr

4. 
Further, the dynamics of the land-atmospheric energy balance are 

governed by the first and the second laws of thermodynamics. In a 
thermodynamic system, the positive irreversible entropy describes the 
irreversible nature and direction of the physical transformation and 
limits the energy available for mechanical work in a heat engine. In a dry 
convective system near the surface, the only irreversibility associated is 
the molecular diffusion of sensible heat from the surface to the adjacent 
atmospheric layer and within the atmosphere, creating an irreversible 
entropy of sensible heat diffusion term (ΔSdif ). According to the study 
(Pauluis and Held, 2002a), the magnitude of ΔSdif is negligible. Hence, 
the dry convection process works as a perfect heat engine with 
maximum efficiency, as given by the Carnot limit of maximum power 
(Gcarnot) and maximum efficiency (ηcarnot) (Refer Section A.1 in Appendix 
A). The irreversibility in moist convection is associated with entropy due 
to phase change (ΔSpc) and entropy due to water vapour diffusion 
(ΔSdv). Both entropies are significant and reduce the ability of moist 
convection to work at maximum efficiency (Pauluis and Held, 2002a,b). 
Hence, they should be considered in a moist convective process. 
Therefore, we developed our theory that considered only the dry 
convective system that occurs near the land surface with negligible 
entropy following a perfect heat engine. 

Another important aspect of irreversibility in the convective process 
is the frictional dissipation of total kinetic energy generated by me
chanical motions of atmospheric flows. In a complete system, the 
dissipation occurs as turbulent dissipation (DK) and precipitation- 
induced dissipation (DP) that become the parts of the system.DK is the 
viscous conversion of mechanical energy of air parcel motion to heat, 
and DP is the heat dissipation in microscopic shear zones surrounding 
hydrometeors. In a dry convective system, we only assume DK to be 
associated with sensible heat transport with the dissipation of me
chanical energy of air parcel. 

The irreversible frictional dissipation of mechanical work associated 
with the convective motion within the same land-atmospheric system 
makes the heat engine a Dissipative Heat Engine. The studies(Bister 
et al., 2011; Pauluis and Held, 2002a) showed that the converted me
chanical energy through frictional dissipation increases the internal 
energy of the system. The heat from frictional dissipation within the 
engine could not be used as an additional heat source to the engine in 
addition to the existing heat source to generate mechanical work as it 
otherwise violates the first law of thermodynamics(Bister et al., 2011). 
Based on this inference, we derived the power of the dissipative heat 
engine (G) through energy and entropy budget (Refer to Section A.2, Eq. 
A7-A10). The heat dissipation of mechanical work (D) and an additional 
term that depicts the change in the internal energy of the system (ΔU) 
act such that G = D = ΔU in a steady state. In dry convection near the 

land surface, convective heat flux associated with the heat engine is the 
sensible heat flux (Jin = H). The internal energy change (ΔU) represents 
change in the atmospheric heat storage (ΔQa) (ΔU = ΔQa) (Fig.1). They 
are used in the expression for power of dissipative heat engine for dry 
convection (Gd) (Refer Section A.2, Eq. A11-A12). 

Further, considering only the dry convective engine near the surface, 
we define the effective dry sink temperature (Tdry) at which the 
remaining sensible heat and water vapour is released into the atmo
sphere. Below the level of Tdry (shown by the X-X line in Fig.1), there is 
no moist convection taking place(Kleidon, 2016). The outgoing radia
tive flux at Tdry is given by Rl,out . The magnitude of Tdry is greater than the 
Tr. 

In dry convection, the sensible heat flux is expressed in terms of 
convective vertical mass flux of air and the temperature difference be
tween the surface and the effective dry sink temperature following the 
works(Kleidon, 2016; Kleidon et al., 2014; Kleidon and Renner, 2013a). 

H = cpJm
(
Ts − Tdry

)
(2) 

Where cp is the specific heat capacity of the air, Jm is the convective 
mass flux exchange of the air parcel. 

As the mass of the air parcel transports water vapour from the surface 
to the cloud base, it is associated with latent heat expressed as follows: 

LE = cpJm
(
qs − qdry

)
(3) 

Where qs and qdry are the specific humidity of the surface air and the 
atmosphere. The above equation of LE is associated with the condition 
that the air had sufficient time and the continuous availability of water 
to saturate the dry air that rises in the dry convection near the land 
(Kleidon and Renner, 2013a). In the case of water limiting conditions, 
the actual LE is given by LElim based on the water stress factor (fw) that 
accounts for water limitation for evaporation such that LElim = fw × LE. 
The corresponding sensible heat flux in that case is given by Hlim. As the 
convection is dependent on the boundary temperatures, the total 
convective heat flux(QJ) is same for all conditions such that QJ = LE +

H = LElim + Hlim (Conte et al., 2019). 
The difference in specific humidity can be expressed in terms of the 

temperature difference and the slope of the saturation pressure curve (s) 
following the study(Kleidon and Renner, 2013a). 

esat,T = 611× e17.6294T − 273.16
T− 35.86 (4)  

s =
desat,T

dt
=

λesat,T

RvT2 (5) 

Linear approximation is expressed as: 
(
qs − qdry

)
=

s
γ
(
Ts − Tdry

)
(6) 

Where λ is the latent heat of vaporization (2.5 × 106 J kg− 1 K− 1) and 
Rv is the gas constant of water vapour (461 J kg− 1 K− 1). 

Therefore, 

LE =
s
γ

H (7) 

The value of s is based on the temperature of the air after it comes in 
contact with the surface to get heated up and saturated with water 
vapour. In a real scenario, the actual temperature of air never reaches 
the surface temperature Ts within a finite time scale. Hence,s cannot be 
computed with Ts. As s varies exponentially with temperature, using Ts 

for the computation of s will lead to a very high value. Hence, to start 
with, we estimate the s at the conservative temperature Tr rather than Ts. 
We compensate for the balance energy later in the convective turbulent 
energy. 

Further, eq. (A8) and (A9) in dry convection becomes: 

ΔQa = H − Hout (8) 
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ΔQa

Ta
=

H
Ts

−
Hout

Tdry
+

Dk

Ta
+ΔSdif (9) 

Where Hout is the release of sensible heat flux out of the dry 
convective heat engine, Dk is the turbulent frictional dissipation of the 
mechanical work within the engine itself, and ΔSdif is the entropy due to 
the diffusion of the sensible heat flux which is negligible. 

In the steady-state Gd =Dk = ΔQa.We assume the dissipation to be at 
the surface for near-surface atmospheric convection. Therefore, the 
power, in this case, is given by: 

Gd = H
Ts − Tdry

Ts
= ΔQa (10) 

A simple linearization for Rlnet is adopted from the study(Conte et al., 
2019) (Refer Section A.4, eq. A17-A24) to replace Ts − Tdry in eq.10 in 
terms of heat flux and radiative exchanges (Refer Section A.5, eq. A25- 
A27) to estimate maximum convective power using expression for Gd: 

Gd = H.
Rs − Rl,0 − H

(
1 + s

γ

)
− ΔQs

TsKd
(11) 

Most of the earth system processes are effectively explained by the 
maximum power limit(Kleidon, 2016; Kleidon et al., 2014; Kleidon and 
Renner, 2013a). There exists an optimal value of sensible heat flux, Hopt , 
at which the convective power is maximum (Gd,max). The value of Hopt at 
Gd,max is derived by dGd

dH = 0. 
Solving dGd

dH = 0, to obtain the analytical expression for Hopt which is 
given as: 

cHopt =
1
2
(
Rs − Rl,0 − ΔQs

)
(12) 

Where, c = 1+ s
γ 

The total turbulent flux in terms of surface heat storage based on the 
maximum convective power is given by the eq. 12. 

We use the radiation components, K↓,K↑,L↑, and L↓ as input variables 
to estimate turbulent flux. 

The surface net-all wave radiation ( Q*) is given by: 

Q* = Rs − Rlnet (13)  

Q* = (K↓ − K↑) − (L↑ − L↓) (14) 

According to the surface energy balance: 

Q* = QJ +ΔQs = LEopt +Hopt +ΔQs = cHopt +ΔQs (15) 

Further solving eq. (12) with eqs. (A20), (A22), (13) and (15), we get 

cHopt = Rlnet − Rl,0 = Kd
(
Ts − Tdry

)
(16) 

To obtain the turbulent flux Hopt using eq. (12), we derived the 
expression 

(
Ts − Tdry

)/
Ts in terms of cHopt and input variables using 

equation s (A20), (A22), (A23) and (16) and the expression is given as: 
(
Ts − Tdry

)

Ts
=

cHopt

4L↑ − 3cHopt
(17) 

We estimate ΔQa in terms of cHopt and input variables from the eqs. 
(A16), (15), and (A22) 

ΔQa = 2cHopt − L↓ (18) 

Using eqs. (17), (18) and (10), we get a quadratic equation given as: 

(1+ 6c)Hopt
2 − (8L↑ + 3L↓)Hopt +

4 L↓ L↑

c
= 0 (19) 

Based on the above theory and additional relation given by eq.10, we 
eliminate the use of surface heat storage to derive the quadratic equation 
for sensible heat flux (eq. 19). 

We solve the eq. (19) using the solution of the quadratic equation to 

get the two values of Hopt with solution as 

Hopt1, Hopt2 =
− B ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B2 − 4AC

√

2A
(20) 

Where: 
A = (1 + 6c). 
B = − (8L↑ + 3L↓)

C =
4L↓ L↑

c 
c = 1+ s

γ 

The two solutions of Hopt , provides the conditions of maximum and 
minimum value of turbulent heat flux such that dGd

dH = 0. Further, the 
profiles may result in the value of Hopt greater than Q* for a few in
stances, which is impossible for actual conditions. In such cases of, we 
assume the value of zero in both Hopt1 and Hopt2 due to insufficient 
availability of net energy. We take the maximum value from the resulted 
two solutions of the Hopt to get the best estimate. 

Hopt = max
{

Hopt1,Hopt2
}

(21) 

We obtain corresponding optimal value of LEopt at maximum 
convective power from Eq. (7) using the value of Hopt. Using Eq. (15) and 
averaging for monthly to achieve steady-state, we obtain the total tur
bulent heat flux (QJ). 

Thus, the total turbulent energy is given by the sum of Hopt and LEopt . 
Further, we estimate the Ts based on the above results. 
Based on the eqs. 16 and A22, we get: 

Rl,out = L↑ − cHopt (22) 

From eqs. 10, 18, 22 and A24, we get: 

Ts =

(
cHopt + 4Rl,out

4Rl,out

)

Tdry (23) 

We found the thermodynamically estimated Ts (Now referred as Tst) 
from eq. 23 is higher than the Ts calculated from Ts =

( L↑
σ

) 1
4. The higher 

value of Tst is due to the conservative estimation of the slope of satu
ration pressure curve (s)(as explained after eq. 7) calculated at the 
temperature Tr (Tr < Ts). The use of Tr in the estimation of s results in a 
lower value of turbulent flux. We compensate for the differential energy 
(QDiff ) in outgoing longwave radiation resulting from the differences 
between Tst and Ts. The QDiff is given as: 

QDiff = σTst
4 − σTs

4 (24) 

Thus, the total adjusted turbulent flux is now: 

QJ = Hopt +LEopt +QDiff (25) 

And the land surface heat storage flux (ΔQs) using eq. 25 is given by: 

ΔQs = Q* − QJ (26) 

The diagrammatic flow chart of the equations from the inputs to 
estimate the surface energy fluxes is shown in Fig. 2. 

We then deduce the sensible and latent heat fluxes at the equilibrium 
partitioning. 

Hopt =
γ

γ + s
QJ (27) 

And 

LEopt =
s

γ + s
QJ (28) 

Here, in the eqs. 27 and 28, the s is calculated at Ts following liter
ature(Conte et al., 2019; Kleidon and Renner, 2013b). The eq. 3 de
scribes the condition in which the evapotranspiration is not limited by 
the water availability. For actual conditions, a stress factor (fw) is 
introduced to estimate the actual LE and H. These in the water limiting 
condition are given by the equations (Conte et al., 2019): 
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LE = fw LEopt (29)  

H = QJ–LE (30)  

3. Data and processing 

3.1. Eddy covariance observations 

To validate the developed theory, we used the FLUXNET2015 (Pas
torello et al., 2020) database, which comprises in-situ observational data 
of turbulent flux and radiation components around the globe covering 
different climate zones and different land covers based on the IGBP 

classification. We also validated three urban regions limited to data 
availability. The FLUXNET2015 database comprises the eddy covariance 
observations of global sites and non-urban regions at 0.5 h resolution. 
We used 99 sites based on the availability of all radiation components, 
incoming and outgoing longwave and shortwave flux. Fig.3 depicts the 
location of EC sites colour coded with corresponding IGBP land cover. 
For validation with EC turbulent fluxes, the observed radiation data 
from the flux tower sites was used to estimate the total turbulent flux 
from the thermodynamic analytical solution (QJthermo). For observed 
total turbulent flux (QJEC = H+ LE), we used the sensible and the Latent 
heat flux not corrected for the surface energy balance closure. To ensure 
the data quality, we used the data points (0.5 h data) only for which 

Fig. 2. Diagrammatic representation of the governing equations to estimate the land surface energy fluxes. The variables are explained in the main body and 
Appendix A. 
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values of all the variables existed. We used total of 6617 site-months of 
all sites for the validation with a minimum of 12 months and a maximum 
of 180 months of a site from FLUXNET data. For urban regions, we used 
only three sites, JP-SAC in Sakai, Japan(25 months)(Ando and Ueyama, 
2017), AZ-WPHX in Phoenix, Arizona(13 months)(Chow, 2017), and IN- 
VMCC in Mumbai, India(4 months)(Gupta et al., 2020) based on the 
availability of data with us. 

3.2. Global satellite data 

For global estimates and evaluation, we used four radiation variables 
(incoming shortwave, reflected shortwave, incoming longwave, and 
outgoing longwave radiation) at the surface level as satellite inputs from 
the CERES Edition4A SYN1deg-MHour product dataset(Rutan et al., 
2015). The dataset is taken for the study period 2003–2019 and is at a 
spatial resolution of 1◦ × 1◦ degree and a temporal resolution of monthly 
hourly. Further, we used the adjusted and all-sky conditions dataset to 
test the applicability at all climatic conditions. The surface radiation 
variables in SYN1deg products are computed based on Langley Fu-Liou 
radiative transfer model with inputs from the MODIS and CERES geo
stationary satellites (GEO), GEOS atmosphere and skin temperature, 
MATCH aerosol constituents, and MODIS spectral aerosol optical 
depths. The satellite instruments are calibrated against the MODIS data. 
Currently, the CERES EBAF dataset provides the most accurate top-of- 
atmosphere (TOA) radiation data over the land(Wild et al., 2015). The 
adjusted CERES Syn data used in this study was developed from the 
CERES EBAF Ed4.0-Surface fluxes derived from CERES EBAF TOA using 
the radiative transfer model. The Root mean square (RMS) difference of 
monthly mean Ed4.0 SYN1deg fluxes used here are similar to the RMS 
difference of monthly mean Ed4.0 EBAF-Surface fluxes. Uncertainties 
may exist in the surface values derived from the TOA fluxes (Kato et al., 
2013) and are associated with clouds, aerosols, temperature retrievals, 
and parameterisation of radiative model. 

To calculate the actual latent heat flux (LE) from the LEopt , we ob
tained the evaporative stress factor (fw) from the GLEAM v3.6b dataset, 
which has a monthly temporal resolution and 0.25◦ spatial resolution 
(Martens et al., 2017; Miralles et al., 2011). The fw is based on vegetation 
optical depth and root zone soil moisture obtained using microwave 
remote sensing. We regridded the data to 1◦ resolution with first-order 
conservative mapping(Division and Alamos, 1999) using the Climate 
Data Operator (CDO) tool and assigned it to the flux grid as above. 

To assess the global daytime variations, the hourly satellite data in 
UTC is converted to a single diurnal time cycle. Based on the local 
timezone of each grid, the time series in each grid is shifted to the cor
responding diurnal time. 

For surface energy flux assessments with global land cover, we 
extracted the IGBP-based land cover classification from the MODIS 
MCD12C1.006(Friedl and Sulla-Menashe, 2015) satellite dataset. We 
rescaled the 500 m resolution of MODIS to the 1-degree using the nearest 
neighbor algorithm. With total land cover classes of 16, we aggregated 
the classes to three major groups, Forests, Non-Forests, and Others, 
based on the canopy size. Further, the LC value from the upscaled data to 
the flux pixel was assigned based on the Nearest neighbor lookups of 
latitudes and longitudes. 

3.3. Global land fluxes products 

For spatial comparison, we used FLUXCOM (Jung et al., 2019), 
GLDAS-NOAH (Rodell et al., 2004), ERA5 monthly Reanalyses (Hers
bach et al., 2020), GLEAM(Martens et al., 2017), and MODIS(Mu et al., 
2007), depending on the availability of the variables. We identified a 
common period of 2001–2013 and a common spatial resolution of 1◦

depending on data availability. For our study, we used FLUXCOM RS +
METEO 0.5◦ monthly averaged with uncorrected values for energy 
balance closure to assess with direct upscaling of EC observations. From 
the FLUXCOM ensemble, we compared our results with three machine 

learning products, Random Forests (RF), Multivariate Adaptive 
Regression Splines (MARS), and Artificial Neural Networks (ANN). The 
GLEAM 0.25◦ total monthly evaporation (mm) was converted to LE by 
adopting a constant latent heat of vaporization of 2.45 MJ mm− 1. The 
MODIS 16A2.006 at 8 day 500 m resolution LE (Running et al., 2017) 
was regridded similarly to MODIS LC. The FLUXCOM, ERA 5 reanalyses 
0.25◦ at monthly averaged, and GLDAS NOAH 1◦ monthly were rescaled 
to 1◦ with first-order conservative mapping using CDO. 

4. Results 

4.1. Thermodynamic estimate of turbulent flux and its validation 

4.1.1. In-situ point estimates for global sites 
We first computed the thermodynamic estimate (TE) of turbulent 

flux calculated using the expressions (Equations19–25) (now denoted by 
QJthermo) for flux sites, using four radiation components K↓,K↑,L↓,L↑. The 
radiation components were taken directly from the FLUXNET sites to 
estimate QJthermo. We then compared QJthermo with the observed turbu
lent flux by eddy covariance (EC) technique (QJEC) at 102 sites (99 from 
FLUXNET and 3 urban regions) for which data of all radiation compo
nents and QJEC were available. We present the results for 38 sites with a 
minimum of 30 months of data (Fig.3, shown in map). For the urban 
regions, there are only 3 sites available, and we considered all of them. 
In Fig.S1, we have shown diurnal variation in Tst and Ts that leads to 
differential energy, which is corrected in the total turbulent convective 
energy (Eq. 24). In Fig.4, we present the average monthly diurnal var
iations of turbulent flux, comparing QJthermo and QJEC. 

Fig.4 shows that turbulent heat flux thermodynamic estimates follow 
the diurnal variations depicted by the eddy covariance observations. The 
errors are minimal for the forest regions, Deciduous Broadleaf Forest 
(DBF), Evergreen Broadleaf Forest (EBF) and Evergreen Needleleaf 
Forest (ENF) [first 3 rows of Fig.4]. For the wetland (WET), at the site, 
US-WPT, the QJEC value is quite low compared to QJthermo.Such a low 
value QJEC could be associated with measurement limitations, as the 
turbulent heat fluxes are normally high for wetlands due to high latent 
heat flux. The good resemblance between QJthermo and QJEC are observed 
in other WET sites in Fig.4. The plots for QJthermo and QJEC are very 
similar for cropland (CRO) and Savannas (SAV) (Fig.4). There are dis
crepancies for a few sites for grassland (GRA) and Open shrublands 
(OSH). The eddy-covariance observations at those sites show high 
closure terms; hence, there may be a possibility of measurement limi
tations. For urban regions (URB), there are differences, which may be 
because of urban structure that often introduces errors in QJEC. Overall, 
there is a very good match between QJthermo and QJEC, showing the ef
ficacy of the thermodynamic model. The summary of RMSE (Root Mean 
Square Error) and MBE (Mean Bias error) of 102 sites is presented in 
Supplementary Table.S2. 

Fig.5 presents the scatter plots of monthly values between QJthermo 
and QJEC at individual sites. For most sites for land use, DBF, EBF, ENF, 
WET and CRO, the points closely fall on the 450 lines with a very high R2 

value between QJthermo and QJEC. There are deviations for GRA, SAV, OSH 
and Urban sites, which are consistent with our observations from Fig.4. 
We regressed QJthermo against QJEC and presented the slope (m) and 
intercept (c) in Fig.5. For most cases, the slope is close to 1, and the 
intercept value is low, showing similarities between the thermodynamic 
estimates and on-site observations. Supplementary Table S2 summarizes 
the analysis of regression performances and coefficients (mean ± Stan
dard Deviation (SD)) for all 102 sites. The adjusted R2 value of 0.86 
(Table.S2) shows good agreement between QJthermo and QJEC. The ther
modynamic approach developed here is able to adequately explain the 
monthly variability of on-site turbulent heat flux observations. 56 out of 
102 sites show R2 values >0.9, and 82 sites >0.8. The slope and inter
cept describe the underestimations and overestimations by QJthermo with 
respect to QJEC.Overall, the analysis reveals slightly greater estimates of 
QJthermo for larger values of QJEC based on an average slope of 1.12. 
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Further, a low mean average intercept of 1.9 W m− 2 indicates low bias 
for lower values. The discrepancies between the estimates QJthermo and 
QJEC indicate either the limitation of TE estimations or EC estimations, 
or both. 

The detailed literature review (Mauder et al., 2020) of the past 25 
years discussed the limitation of EC observations. They reported sys
tematic underestimations of the turbulent energy due to uncertainties in 
the complicated data analysis in the EC technique. Further, the obser
vations by a single flux tower are unable to capture larger-scale meso
scale eddy circulations. At almost all the flux tower sites, the surface 
energy balance does not follow the conservation of energy since the 
available energy (Q*) is more than the sum of observed variables, QJEC 
and ΔQs measured by heat flux plate, resulting in residual energy (QRes). 
It could be possible that the TE estimates are overcoming the limitations 
of EC techniques; however, it is difficult to infer the same from the 
present analysis. 

A detailed study (Stoy et al., 2013) based on the analysis of 173 
FLUXNET sites concluded that the differences in the surface energy 
balance closure (CEB), reciprocal to QRes, between different land covers 
(forests, non-forests, and other areas) are insignificant. However, the 
literature suggests that improvement in the CEB is possible by addressing 
the underestimation of soil heat storage(Higgins, 2012) and considering 
unquantifiable factors, such as the role of water(Stoy et al., 2013), heat 
storage in the canopy(Heidkamp et al., 2018) and metabolic terms, as 
well as photosynthesis(Meyers and Hollinger, 2004). Further, a study 
(Lindroth et al., 2010) that assesses the energy balance closure showed 
that the heat flux from tree biomass, ignored in energy balance, is the 
biggest of the anticipated storage components in ΔQs. The case study 
(Heidkamp et al., 2018) of modeling turbulent fluxes for shallow vege
tation showed improvement by including canopy heat storage elements. 

Thus, the QRes from EC estimation is also associated with under
estimating ΔQs and should be dependent on the land cover types for 
obvious reasons. Further, as the QRes(CEB is lower) is higher during 
daytime with higher Q* (Franssen et al., 2010; Stoy et al., 2013), Fig.4 
shows higher biases between the QJthermo and QJEC, during the daytime, 
which could be due to high QRes. 

To understand the dependence of the bias on land cover, we present 
the relative differences in turbulent heat fluxes between QJthermo and 
QJEC,with respect to Q*(scaled by Q* for comparison) in Table.S3. The 
biases are computed for the peak daytime (10:00–14:30 local standard 
time). We applied the two-sample Kolmogorov-Smirnov two-sided test 
and k-sample Anderson-Darling test at a significance level of 0.05 to 
understand the differences between the bias samples from different land 
covers. We found that the scaled bias for forests (2.6 ± 13.5%) is 
significantly different from non-forests (includes GRA and CRO, 10.1 ±
8.7%), Wetlands (40.6 ± 64.2%), Urban areas (30.5 ± 1%), and Other 
areas (includes SAV and OSH, 13.3 ± 8.9%). Further, the individual 
differences are significant between non-forest & wetlands (WET), and 
Others and WET. Based on the monthly analysis, we found that the 
biases for the sites in non-forests (CRO and GRA) and Others (SAV and 
OSH) are highest in the precipitation months (Fig.S2). This bias is 
probably due to the limitations of EC stations in estimating high Latent 
Energy (LE). Thus, we conclude that QJthermo captures the limitation of 
QJEC to observe high turbulent energy, which occurs mainly in canopies 
with low biomass and heat storage elements. We found higher biases or 
additional turbulent flux compared to EC measurements for areas with 
low canopy elements (such as Non-forests) than areas with high canopy 
elements with more biomass (such as forests). 

Fig. 3. The geographical locations of eddy covariance sites used for validation: Each dot represents an Eddy covariance location with colour code represents the 
associated land cover. The numbers are only assigned to the sites showed in the subsequent figures. The details of the sites based on the corresponding numbers can 
be accessed from the supplementary file TableS1. The study considers 9 LULC classifications. They are: DBF- Deciduous Broadleaf Forest, EBF- Evergreen Broadleaf 
Forest, ENF- Evergreen Needleleaf Forest, CRO- Croplands, GRA- Grasslands, SAV- Savannas, OSH- Open Shrublands, Urban, and WET- Wetlands. 
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4.1.2. Global estimates of turbulent heat fluxes and their validation with EC 
observations 

After validating our methodology, we used it to develop globally 
distributed land surface estimates of turbulent fluxes at 1◦ spatial reso
lution using four radiation variables, all-sky incoming and outgoing 
shortwave, and longwave radiation flux (K↓, K↑, L↓, L↑), at the surface 
level obtained from the remotely sensed dataset CERES Edition4A 
SYN1deg-MHour, which is at a spatial resolution of 1◦ and temporal 
resolution of monthly hourly. We present the results in Fig.6. The figure 
shows the spatial variations of the radiation components at the surface 
for four seasons, DJF, MAM, JJA, and SON. The period considered is 
2003–2019. The globally distributed land surface Net radiation (Q*) 
(Fig.6, top row) estimated from the incoming and outgoing fluxes, is 
used to calculate the global turbulent heat flux field (QJ)(Fig.6, 2nd row) 
based on thermodynamic principles using the expressions (19–25). 
Fig.6, 3rd row presents the land surface storage heat flux (ΔQS). The 
major parts of the northern hemisphere have the highest positive value 

of (ΔQS) in JJA, followed by MAM, which steadily becomes negative in 
SON and the highest negative during DJF. This is expected due to sea
sonal patterns. However, we found positive ΔQS throughout all the 
seasons for Amazon forests and Middle Eastern Africa characterized by 
mostly Tropical and Subtropical moist climates with moist broadleaf 
forests, grasslands, savannas and shrublands. We further calculated the 
global latent and sensible heat flux fields (Fig.6, last two rows) using eqs. 
27–30 and fw. During the JJA season, the monsoon regions north of the 
Equator, such as South Asia, have a high latent heat flux due to the wet 
season. The desert/arid regions, like Sahara in Africa or California in the 
US, have low latent heat flux, resulting in very high sensible heat flux. 
The radiation components are generally lowest in the northern hemi
sphere in DJF due to seasonally low Q*. 

We validated our estimates using remote sensing data with the flux 
tower estimates. We picked up the site with the highest data points for 
validation for each land cover. We see the monthly variation between 
CERES and FLUXNET by assessing variation for absolute magnitude 

Fig. 4. Comparing the average diurnal variations of QJthermo and QJEC. The total turbulent flux from TE theory and EC observations is compared for 38 FLUXNET 
sites and three urban sites. The months in each box represents the averaging period for the respective site. They are arranged based on land covers: DBF Deciduous 
Broadleaf Forest, EBF- Evergreen Broadleaf Forest, ENF- Evergreen Needleleaf Forest, WET- Wetlands, CRO- Croplands, GRA- Grasslands, SAV- Savannas, OSH- Open 
Shrublands, and Urban. The locations of the sites are presented in Fig.3. QJEC, Observed turbulent heat flux by EC, QJthermo turbulent heat flux estimated from the 
thermodynamic model, Q* - Observed net radiation. 
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(Fig.7) and monthly anomalies after deseasonalization (Fig.S3). For 
absolute values, we have found a very strong similarity. The results 
depict high agreement in the variables, K↓, L↓ and L↑ of CERES and 
FLUXNET 2015 in-situ dataset with adjusted R2 values >0.96 for all the 
sites. However, we observe an underestimation of K↑ from CERES for a 
few sites. The QJthermo estimated from these input variables from CERES 
shows high agreement with an adjusted R2 >92%. The scatter plots 
between thermodynamic estimates from satellites and in-situ observa
tions show all the points falling close to the 450 line. For monthly 
anomalies, the CERES shows good agreement for K↓, L↓ and L↑ to 

FLUXNET but less as compared to the absolute values. The K↑ shows less 
agreement as it depends on land surface characteristics like albedo and 
land use, which differs due to scaling challenges while linking remote 
sensing footprints to tower footprints. Further, the estimated QJthermo 
from CERES matches well (with average adjusted R2 = 0.6) with the 
FLUXNET sites observations. Thus, we see the capability of the analyt
ical thermodynamic-based expressions to estimate the global surface 
fluxes. 

Fig. 5. Evaluating the QJthermo with QJEC using correlation statistics. The data points are at the monthly averaged. The adjusted R2 is the explained variance of 
QJthermo by QJEC and a measure of the fit; slope (m); and intercept (c) are the regression coefficients. Root mean square error (RMSE) and Mean Bias error (MBE) are 
estimated for QJthermo with respect to QJEC. 
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4.1.3. Validation with global products of land fluxes 
We compared the analytical estimates of global spatial patterns of 

mean annual QJ with FLUXCOM, GLDAS, and ERA5 Reanalyses. For LE, 
we compared with FLUXCOM, GLEAM, and MODIS. The comparison 
(Figs. 8 and 9) shows the large global patterns of QJ and LE consistent in 
all products. The QJ is observed to be high in the tropical regions due to 
high incoming radiation as compared to the high latitude regions with 
low incoming radiation. The LE shows higher values, especially, regions 
of global monsoon domains, such as South American Amazon region, 
middle Africa, Asian region with India and south-eastern China, and 
North Australia. Among the FLUXCOM ensembles, QJthermo performs best 
with fluxes from the random forest (RF) algorithm (shown in Fig7. 
Second row) with highest coefficient of variation (R2 = 0.82) and 
regression slope (m = 0.95) as compared to MARS (R2 = 0.76, m = 0.88) 
and ANN (R2 = 0.79, m = 0.67) (Fig.S4). QJthermo performs almost 
similarly in MARS and RF, but comparison with ANN shows higher 
negative bias especially in regions of global monsoon domains, like 
Amazon forests, middle Africa, and east Asia (Fig.S4). On estimating the 
residual heat flux (QRes), the ANN shows high negative values (Fig.S5) in 
the same regions which should be due to overestimation of QJ and ex
plains higher negative bias with QJthermo. With RF and MARS, QJthermo 
shows positive bias in most regions like the EC observations. As dis
cussed in the section 4.1.1, such bias could be due to EC limitations to 
observe all turbulent energy and percolates in the FLUXCOM RF and 
MARS from uncorrected observed EC fluxes. The evaluation of QJthermo 
with Noah Land surface model (LSM) based GLDAS product depicts best 
agreement (Fig.8, third row) with high R2 (R2 = 0.91) and least bias 
(− 0.51 Wm− 2) and RMSE(11.52 Wm− 2). In many LSMs such as Noah 
(Niu et al., 2011), the residual energy for energy balance closure is 
inherently assumed only to heat the soil column. The negative bias in 
QJthermo or higher values of QJGLDAS in high canopy areas of tropical re
gions, such as Amazon rainforests and middle Africa, may be associated 
with excessive soil heating due to the residual energy in the model. The 
increased surface temperature drives the turbulent heat, which other
wise would be trapped as a canopy heat storage within the canopy. This 

is reflected in the limitations of the models to capture the nighttime 
warming by the forests that dampen the diurnal temperature range 
(Meier et al., 2018, 2019; Schultz et al., 2017). Compared with ERA5 
(Fig.8, fourth row) reanalyses, QJthermo performs well but shows higher 
values (positive bias) for low QJERA. The Q* from CERES is higher than 
the Q* from ERA5 (Fig.S6) in the same regions. The underestimation of 
Q* in ERA5 could be the reason for lower QJERA or higher QJthermo in these 
regions. 

Using fw from GLEAM to estimate LE provided excellent agreement 
(R2 = 0.93, m = 0.87) with GLEAM for obvious reasons; however, it 
could result in underestimation as the stress factor will proportionally 
decrease the interception evaporation from LEopt. This is observed in 
Fig.9, second row, where the LEthermo shows lower values than LEGLEAM in 
Amazon forests, middle Africa, and east Asia. LEthermo shows higher 
values in other regions, possibly due to higher potential evaporation 
estimates LEopt at equilibrium partitioning than from GLEAM, as both 
products use the same CERES Net radiation data. The other reasons 
could be the assumptions of soil heat flux to be a constant fraction of Q* 

in GLEAM and the use of homogenous plant functional type. This un
derestimates LE, as depicted by Zimba et al. (2022). With FLUXCOM RF, 
LEthermo agrees well (Fig.9, first row, R2 = 0.80, m = 1.08) but shows 
higher values in monsoon-rich regions and high latitudes, possibly due 
to the underestimation of upscaled uncorrected EC values in LEFLUXCOM. 
In comparison with MODIS (Fig.9, third row), LEthermo agrees adequately 
(R2 = 0.80, m = 0.87) and performed best in dense forest regions such as 
Amazon, central west Africa, boreal forests, and southeast Asia. LEthermo 
shows positive bias in regions with low and moderate LE such as India, 
north of central Africa, and southern part of South America. The eval
uation of global terrestrial evaporation data sets using EC towers by the 
WACMOS-ET project shows that the MODIS evaporation underestimates 
LE in the tropics and subtropics compared to other products such as 
GLEAM(Miralles et al., 2016). Such underestimation by MODIS evapo
ration products is also reflected in the performance measures of our 
products with different datasets (Fig.9). 

Fig. 6. Seasonal variation of estimated annual average fluxes for the period 2003–2019. The fluxes are estimated from the CERES monthly global Syn dataset at 
1֯ resolution. Q*(Net Radiation) derived from CERES radiation components (K↓, K↑, L↓, L↑). QJ (Turbulent heat flux) and ΔQS(land surface heat storage) are the 
estimated fluxes from the thermodynamic model. The global latent heat (LE) and Sensible heat (H) flux fields are estimated based on the evaporative stress factor 
from the GLEAM dataset. 
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Fig. 7. Validation of QJthermo derived from CERES. The monthly estimates of QJthermo(turbulent heat flux estimated from the thermodynamic model with inputs of 
radiation variables from CERES monthly global Syn dataset at 1֯ resolution) with QJEC (Observed turbulent heat flux by EC from FLUXNET2015 databases). The figure 
also shows the variation of CERES Incoming shortwave radiation (K↓), Outgoing shortwave radiation (K↑), Incoming longwave radiation (L↓), Outgoing longwave 
radiation (L↑) with observed on-site data of corresponding variables on flux towers within the grid. The statistics used are very similar to Fig.5. 
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4.2. Thermodynamic estimate of global land surface heat storage 

The land surface heat storage flux (ΔQs) is defined as the net heat 
storage change (uptake or release) in the volume per unit of horizontal 
land area. The land volume comprises a certain depth of the ground and 
the canopy elements associated with land covers such as buildings and 
vegetation in urban areas and biomass of trees in forests(Oke and 
Cleugh, 1987). Here, we present the first global estimates of ΔQs as 
energy balance residual using eq. 1 with QJ as QJthermo and analyze its 
behaviour geographically. In general, ΔQs is minimal in wet areas with 
sparse canopy elements due to high LE but reaches a higher value in arid 
regions with values equivalent to H and often exceeds LE. Further,ΔQs 
with a considerable amount of biomass heat storage in forest regions 
dampens the diurnal temperature range(Meier et al., 2019). We examine 
these behaviours of ΔQs on global land by estimating daily means 
(Fig.10, column 1) and daytime means (10:00 to 14:30 local time, 
Fig.10, column 2) for 2003–2019 to see if these processes are accurately 
represented. The arid regions such as mainly in the southwestern United 
States, the Sahara Desert in northern Africa, the Arabian Peninsula, the 
Thar desert in India, and central Australia have a very high positive ΔQs 

(Fig.10c) and ΔQs/Q* (Fig.10d) during the peak solar hours because of 
low LE. However, in the non-peak solar hours the land surface in these 
regions releases much heat, resulting in very low to negative 24 h mean 
values of ΔQs (Fig.10 a) and ΔQs/Q* (Fig.10 b). The mean daily ΔQs and 
ΔQs/Q* show a substantial amount of energy throughout the Amazon 
forests compared to barren regions like the Sahara Desert. This 

characteristic is due to the heat storage capacity of the biomass. How
ever, during the peak solar hours, high evapotranspiration and high LE 
results in a comparatively low land heat storage flux, as compared to the 
arid regions. Further, we see that the percentage ΔQs/Q* is highest in the 
arctic-boreal regions (Fig.10c) during both daily and daytime mean as 
permafrost acts as a large sink of energy and net radiation melts ice in 
the active layer(Engstrom et al., 2006). However, ΔQs during peak solar 
hours shows smaller values than arid regions due to the low net radia
tion (Fig.10d). 

4.3. Global average land fluxes estimates and comparison with literature 

With an absorbed land-mean solar radiation of 143 Wm− 2 at the 
surface and net longwave emitted from the land surface given by 59 
Wm− 2, we estimate the global land (90◦N-90◦S) Q* of 84 Wm− 2 for 
2003–2019 (Table.S4) based on the CERES Syn dataset. The estimate is 
similar to the CERES EBAF Q* of 79.10 Wm− 2 calculated for the same 
period. Our estimates are slightly higher than the estimated Q* values of 
77.5 Wm− 2 by Jung et al. (2019), 76 Wm− 2 by L’Ecuyer et al., (2015), 
and 70 Wm− 2 Wild et al. (2015). Based on the Q* as input from CERES 
Syn, the thermodynamic model estimates global land QJ as 82 Wm− 2 

and ΔQs as 2 Wm− 2. All the global value in this study are determined as 
area-weighted average over the land. The global LE is 40 Wm− 2. The 
value is consistent and in good agreements with 39.5 W m− 2 by Jung 
et al. (2019), 38.5 W m− 2 by Trenberth et al. (2009), 37–59 W m− 2 by 
Jiménez et al. (2011), and 38 W m− 2 by Wild et al. (2015). For the same 

Fig. 8. Spatial validation of QJ derived from CERES with global products. The mean annual estimates of QJ are compared. The first row depicts the spatial QJ 

from thermodynamic estimates. From second row, the first column is the global values of QJ from global products, the second column depicts the bias (QJthermo - 
QJproduct) between thermodynamic estimate and global products, the last column is the evaluation of spatial values of QJthermo with QJproduct using correlation statistics 
and regression coefficients. RMSE, MAE, and MBE have units Wm− 2. 
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Fig. 9. Spatial validation of LE derived from CERES with global products. The mean annual estimates of LE are compared. The first row depicts the spatial LE 
from thermodynamic estimates. From second row, the first column is the global values of LE from global products, the second column depicts the bias (LEthermo −

LEproduct) between thermodynamic estimate and global products, the last column is the evaluation of spatial values of LEthermo with LEproduct using correlation statistics 
and regression coefficients. RMSE, MAE, and MBE have units Wm− 2. 

Fig. 10. Global estimates of land surface heat storage and its variation as global average and daytime average. The heat storage flux is estimated using the 
thermodynamic theory derived in this study. Column 1 depicts the daily means of (a) Land surface heat storage flux ΔQs and (b) ΔQs scaled by Q*(ΔQs/Q*). Column 2 
depicts the same variables (c) ΔQs and (d) ΔQs/Q* but averaged over local daytime (10:00–14:30 HRS). 
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global spatial extent global H, as the difference between QJ and LE, is 42 
W m− 2. The estimated H is in excellent agreement with Jung et al. 
(2011) with the value of 41 ± 4 Wm− 2, higher than the range of 36–40 
W m− 2 estimated by Siemann et al. (2018), lies well above 27 W m− 2 

estimated by Trenberth et al. (2009), and well within the range of 18–57 
W m− 2 estimated by Jiménez et al. (2011). 

We found that the land use land cover drives the distribution of land 
surface heat fluxes (Table.S4). For example, the forest regions have a 
high value of global area averaged ΔQs for the period 2003–2019 as 6.72 
Wm− 2.This is because of high canopy heat storage potential. On the 
contrary, the non-forest regions have a globally averaged ΔQs as 2.7 
Wm− 2. The same is true for shrublands and Savannas with average value 
of 1.5 Wm− 2. The barren regions have negative values of − 2.47 Wm− 2 

for ΔQs. The distributions show the role of vegetation in storing heat 
fluxes and thus driving the partitioning of incoming radiation fluxes 
perturbing local climate. The differential values of ΔQs across land use 
land covers are consistent with previous literature on parametrized 
models for heat storage(Meier et al., 2019). 

5. Discussions 

Our analytical approach for estimating surface energy fluxes is based 
on updating the previous theory that describes the land-atmospheric 
interactions as a radiative-convective system with energy and entropy 
budgets using the first and the second law of thermodynamics, respec
tively. The approach draws on the interplay between two parallel 
cooling mechanisms of the land, net longwave radiative exchange and 
turbulent cooling, after getting heated up by solar radiation. The tur
bulent flux develops due to local buoyancy generation and the power to 
drive convection, which is analogous to the working of a heat engine. 
We proposed that the Carnot limit, which is the maximum efficiency of a 
heat engine to produce power, should apply only to the sensible heat 
flux-driven dry convection near the land. Further, due to the land- 
atmosphere being a dissipative system, we added one extra constraint 
in which heat released due to the frictional dissipation of mechanical 
energy of air parcel becomes the internal energy of the atmosphere. 

The importance of this approach lies in estimating non-radiative 
fluxes, QJ and ΔQs, of surface energy balance with only four radiative 
inputs without any parameterization. Since radiative information can be 
retrieved from remote sensing, the approach being independent of sur
face and climate characteristics inherently captures the variability 
associated with heterogeneity otherwise constituted as parametrization 
and constants with only broad classifications in RS models and LSMs. 
Further, this allows the method to be computationally efficient for 
global application. 

Our results compare well with the EC observations, signifying that 
the additional constraints imposed by thermodynamics perform well in 
providing the analytical solution in land-atmospheric interactions. We 
also explored the cases of disagreements, and while doing so, we could 
address some of the unresolved science questions, such as the distribu
tion of residual energy in the land surface energy balance, limitations of 
EC observations, and the role of land surface heat storage (Mauder et al., 
2020; Stoy et al., 2013). As Q* in the energy balance equation, partition 
only into QJ and ΔQs, a clear definition of ΔQs should be consistent with 
all land covers. Studies showed the importance of canopy heat storage in 
altering local climate (Meier et al., 2018, 2019; Schultz et al., 2017) and 
parameterized to several land surface models for non-urban spaces like 
forests (Boone et al., 2017; Heidkamp et al., 2018; Moore and Fisch, 
1986). Rather than considering the canopy heat storage as an additional 
term, we followed the definition of ΔQs by (Oke and Cleugh, 1987) that 
comprises heat storage in all components of the canopy, including sen
sible and latent heat storage and ground (soil in non-urban areas). In the 
results, firstly, the higher mean QJthermo than observed QJEC suggests that 
QJthermo has overcome the limitation of EC in estimating the entire tur
bulent energy. Secondly, our results demarcated the impact of land 
covers in partitioning to QJ and ΔQs, which were not apparent with EC 

observations. Our findings suggest that the land surface with dense 
canopy, high biomass, and wet regions tends to have high ΔQs as 
compared to the vegetation of lower canopy due to the buffering effects 
of the canopy. In the arid regions with a very low canopy, like Sahara 
Desert and Arabian Peninsula, the higher values of ΔQs during the day 
indicates the absence of latent heat flux and subsequent cooling by net 
longwave radiation from the land surface. The lower daily mean 
(including both day and night) ΔQs in these regions indicates the 
negligible buffering capacity. 

Our results on validation with global products show great agreement 
in the spatial distribution of the fluxes. When compared with FLUXCOM 
products, we found that the performance of our approach is sensitive to 
the ML algorithms used in FLUXCOM. The level of agreement was in the 
order of RF > MARS>ANN in FLUXCOM ensemble. Like the EC com
parison, the higher estimation of total turbulent flux than FLUXCOM 
depicts the improved outcomes. The best performance with the GLDAS 
suggests the importance of data assimilation in LSMs to estimate fluxes. 
The ERA5 reanalysis shows a lower value of QJ due to the underesti
mation of Q*. 

Although radiative inputs from CERES Syn monthly dataset used 
here are based on accurate CERES EBAF TOA, there is a possibility of 
high uncertainty in the input. For a global observed land Net radiation 
(Q*) of 84 Wm− 2 from the satellite, we found the long term (2003–2019) 
average value of H,LE and ΔQs to be 42 Wm− 2, 40 Wm− 2 and 2 Wm− 2, 
respectively. The H and LE are in great agreement with the literature. 
However, the long-term mean ΔQs is found to be higher. The average of 
land and ocean long term surface heat flux should not be >1 Wm− 2, 
which corresponds to earth energy imbalance(Schuckmann et al., 2020). 
In our model, we could not address this uncertainty, which is a caveat of 
our approach. 

For partitioning total turbulent heat flux, our approach offers 
another advantage by using the microwave remotely sensed evaporative 
stress factor (fw) spatially available for each grid. In comparison to 
FLUXCOM and MODIS, the LE estimates show higher values. However, 
we used fw from GLEAM dataset, which does not consider interception 
evaporation. This is another limitation of our study. 

Despite these limitations, our approach has plenty of potential ap
plications for assessing surface energy budget in a changing climate and 
land use. We believe that the present work provides the first step to 
simulate land surface fluxes solely based on physical principles without 
parametrization. 

6. Conclusions 

We developed an analytical approach to estimate turbulent and land 
surface heat storage fluxes based on the thermodynamic principles of 
maximum convective power. Working on the previous studies on the 
thermodynamic theory that describes the land-atmosphere as a 
radiative-convective system, we improved the theory to estimate the 
turbulent fluxes successfully. The uniqueness of the approach is that this 
needs only incoming and outgoing surface radiation fluxes that are 
merged satellite and model products. The methodology is validated 
against the flux tower observations across the globe from different land 
use land covers. For the first time, such a method provides globally 
gridded analytical estimates of turbulent and land surface storage heat 
fluxes without using climate or land surface models involving parame
terizations, thus not suffering from model deficiencies and uncertainties. 
We found that such thermodynamic estimates also overcome some of the 
limitations of the eddy covariance estimates. We further analyzed the 
spatial and diurnal variations of the turbulent and land surface heat 
storage fluxes and found them consistent with our existing site-specific 
knowledge. The spatial estimates agreed well with the global land sur
face flux products. The methodology is applicable to in-situ observation 
sites as well as to a large region. The surface energy products generated 
through the present study overcome the limitations of the non-existence 
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of observed surface energy flux data and will help the climate commu
nity understand the trajectory of surface processes across land use 
changes in a warming environment. 
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Appendix A. Atmosphere as a convective dissipative heat engine 

The radiative heating of the surface makes the air parcel in contact gain a lower density, increase its potential energy, and develop a state of 
thermodynamic disequilibrium. This disequilibrium causes the system to derive work as a heat engine to generate a convective motion by creating a 
buoyant force to reduce the potential energy of the parcel and depletes the temperature gradient. This motion is associated with transporting energy, 
mass, and momentum through fluxes between the surface and the atmosphere. 

A.1. Carnot limit of a heat engine 

Consider a heat engine with two reservoirs, a hot reservoir and a cold reservoir, and heat fluxes from the hot reservoir as Jin and comes out from the 
cold reservoir as Jout . In the case of the land-surface atmospheric convective system similar heat engine develops such that the hot reservoir is the 
surface, a source of turbulent fluxes Jin, with a temperature Ts. The cold reservoir is at the boundary of the atmosphere, where the effect of local 
convection merges with large-scale motion, and the engine releases heat Jout from the local convective system at a radiative temperature Tr.The engine 
develops a power G = dW/dt, work per unit time, that generates convective motion using turbulent heat as input from the surface. For maximum 
Carnot power and efficiency, no heat is used to increase the engine’s internal energy, and the heat input is fully utilized to generate power. 

The energy balance is expressed as: 

Jin = Jout +G (A1) 

The entropy balance of the engine with internal entropy generation (σ) is: 

σ +

(
Jin

Ts
−

Jout

Tr

)

= 0 (A2) 

To derive power G, the expression of Jout from the energy balance (eq. A1) is inserted into the entropy balance (eq.A2). 

G = Jin

(
Ts − Tr

Ts

)

− σTs (A3) 

According to the second law of thermodynamics, σ ≥ 0. The maximum power (Gcarnot) is achieved when there is no entropy generation inside the 
engine σ = 0. So, the expression of Gcarnot is 

Gcarnot = Jin

(
Ts − Tr

Ts

)

(A4) 

The Carnot efficiency, maximum efficiency due to the maximum power, is given by: 

ηcarnot =
Gcarnot

Jin
=

(
Ts − Tr

Ts

)

(A5)  

A.2. Power of a dissipative heat engine 

In a dissipative engine, the generated mechanical work dissipates within the engine and increases its internal energy. The dissipative heat in such 
an engine, even if it dissipates near the hot reservoir, does not act as an additional source with input heat, G. It increases the internal energy of the 
system. The radiative-convective process of the land-atmosphere behaves as a dissipative engine. Considering the same engine as above but with an 
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additional process of frictional dissipation (D) and additional term, we get the state of internal energy of the system (ΔU). The power generated for the 
convection motion in the engine is given by G. 

According to the first law of thermodynamics, the energy budget of a heat engine: 

ΔU = ΔJ − G (A6) 

Where, ΔU is the internal energy of the engine, ΔJ is the amount of heat flux, and G is the power develops for mechanical work. 
For a dissipative heat engine in a steady state,D is added because the total power for convective motion is dissipated as heat within the engine. 

ΔU = Jin − Jout − G+D (A7) 

In a steady state, G = D because the total power for convective motion is dissipated as heat within the engine. In addition,G = D = ΔU because the 
generated heat from frictional dissipation cannot be used as an additional heat source to generate work but converts into the internal energy of the 
engine to raise its temperature. So, eq. (A7) becomes: 

ΔU = Jin − Jout = D = G (A8) 

The associated entropy budget of a dissipative heat engine is given by the entropy associated with the change in the internal energy of the engine at 
an effective temperature of the heat engine Ta, entropy associated with the input energy from the hot reservoir at the temperature Ts, entropy from the 
emitted heat at the temperature Tr, entropy due to frictional dissipation term D at Ta, and the irreversible entropy production ΔSirr within the engine 
other than due to frictional dissipation. 

ΔU
Ta

=
Jin

Ts
−

Jout

Tr
+

D
Ta

+ΔSirr (A9) 

For a system where the irreversible entropy generates only due to the frictional dissipation, entropy through non-frictional dissipation is zero 
(σirr = 0). In that case, the maximum power or Carnot limit of the dissipative heat engine is estimated by assuming σirr = 0 in the (A9), eliminating Jout 

in eq. (A10) with the expression from eq. (A8), and using G = D in steady-state. 

G = Jin
Ta

Ts
.
Ts − Tr

Tr
− ΔU.

Ta − Tr

Tr
(A10) 

For the land-atmosphere dry convective system, Ta is the mean temperature of the atmosphere. As the convective engine is operated in the lower 
atmosphere, it is closer to the surface temperature and can be reasonably assumed as Ta ≈ Ts. The atmospheric heat storage represents the internal 
energy of the engine (ΔU = ΔQa). For a dry convective system, the Sensible heat represents the heat source (Jin = H), and the temperature of the cold 
reservoir is given by the dry sink temperature Tdry. Thus, from (A10), we get the expression of the limit on power generation of the dissipative 
convective engine in which irreversible entropy generates only because of the irreversible frictional dissipation. 

Gd = (H − ΔQa).
Ts − Tdry

Td
(A11) 

Further, from eq. (A7), G = D = ΔQa, eq. (A11) becomes: 

Gd = H.
Ts − Tdry

Ts
= ΔQa (A12)  

A.3. The storage heat distribution in the land-atmosphere dry convective system 

The energy budget equation of the surface is given by: 

ΔQs = Rs − Rl,net − H − LE (A13) 

The energy budget of the atmosphere is given by: 

ΔQa = Rl,net +H +LE − Rl,out (A14) 

And the entropy budget is given by: 

ΔQa

Te
=

H
Ts

+
LE
Tdry

+
Rl,net

Tdry
−

Rlout

Tdry
+

Dk

Te
+ΔSdif (A15) 

Te is the temperature of the engine. The Te is approximated by Ts as the process is taking place close to the surface. The total energy balance of the 
system and heat storage (ΔQtotal) in the land-atmospheric system during the dry convection is given by adding eqs. (A13) and (A14): 

ΔQtotal = ΔQa +ΔQs = Rs − Rlout (A16) 

According to eq. (A12), we assumed that the heat storage in the atmosphere (ΔQa) or an increase in the internal energy of a dry convective system 
only occurs due to the changes within the heat engine. However, a parallel radiative transfer of energy Rl,net, independent of the heat engine, also 
contributes to heat storage changes in the atmosphere. It is essential to understand the change in the power limit given by eq. (12) due to Rl,net. 
According to the study (Kleidon and Renner, 2018), in both cases where the atmosphere is opaque to Rl,net or completely transparent does not change 
the power limit given by the eq. (A12). 

A.4. Linearization of longwave radiative heat transfer ( Rl,net) 

Rl,net = L↑ − L↓ (A17) 
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Rl,net = σTs
4 −

3
4

τσTdry
4 (A18) 

The surface is assumed as a blackbody with thermal emission given by σTs
4. σ is the Stefan-Boltzmann constant (σ = 5.67× 10− 8). L↓ = 3

4 τσTdry
4 

gives the longwave radiative flux towards the surface. τ is the longwave optical depth (or thickness) of the atmosphere. In our model, we use L↓ as the 
input. However, many parameterization schemes exist to estimate L↓ from on-ground meteorological variables(Loridan et al., 2011; Offerle et al., 
2003). 

To estimate maximum convective power, the expression of net longwave radiation is linearized using first-order Taylor expansion around the sink 
temperature(Tdry) 

σTs
4 ≈ σTdry

4 +Kd
(
Ts − Tdry

)
(A19) 

Where Kd is a first order constant given by Kd = 4σTdry
3. 

Combining eqs. (A17), (A18), and (A19), we get the linear approximation of Rl,net in terms of temperature difference. 

Rl,net = Rl,0 +Kd
(
Ts − Tdry

)
(A20) 

With constant Rl,0 given as: 

Rl,0 = σTdry
4 − L↓ (A21) 

The atmospheric temperature at which the heat is radiated out from the dry convective engine is the effective dry sink temperature (Tdry). It is the 
temperature with the highest radiative entropy to radiate out from the dry convective heat engine with associated emission of radiation given by 
radiative flux (Rl,out = σTdry

4). 
So eq. (A21) becomes: 

Rl,0 = Rl,out − L↓ (A22)  

Kd =
4Rl,out

Tdry
(A23) 

And, 

Tdry =

(
Rl,out

σ

)
1
4 (A24)  

A.5. Turbulent fluxes from the maximum convective power limit 

The dry convection in the lower atmosphere transports heat as Sensible heat flux and passively transports latent heat flux until water vapour 
condenses. The surface also cools through the radiative transfer of heat Rl,net . In a complete land-atmospheric convective system boundary, the heat 
engine and Rl,net reduces the temperature difference of boundaries. The sensible heat flux in dry convection is derived by maximizing the convective 
power 

( dG
dH = 0

)
. The eq. (A13) from eq. (A20) can be written as: 

ΔQs = Rs − Rl,0 − Kd
(
Ts − Tdry

)
− H − LE (A25) 

From eq. (A25), we can express the temperature difference as: 

Ts − Tdry =
Rs − Rl,0 − H − LE − ΔQs

Kd
(A26) 

From eq. 7 in theory section, we can replace LEopt in terms of Hopt in eq. (A26) 

Ts − Tdry =
Rs − Rl,0 − H

(
1 + s

γ

)
− ΔQs

Kd
(A27) 

To obtain the maximum convective power of the engine driven by the sensible heat flux (H), Gd. from the eq. (12) and (A27) can be written as: 

Gd = H.
Rs − Rl,0 − H

(
1 + s

γ

)
− ΔQs

TsKd
(A28)  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2023.113659. 
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